
111

Mitigating Memory Wall Effects in CNN Engines with
On-the-Fly Weights Generation

STYLIANOS I. VENIERIS∗, Samsung AI Center, Cambridge, UK
JAVIER FERNANDEZ-MARQUES∗, Samsung AI Center, Cambridge, UK
NICHOLAS D. LANE, Samsung AI Center, Cambridge & University of Cambridge, UK

The unprecedented accuracy of convolutional neural networks (CNNs) across a broad range of AI tasks has
led to their widespread deployment in mobile and embedded settings. In a pursuit for high-performance
and energy-efficient inference, significant research effort has been invested in the design of FPGA-based
CNN accelerators. In this context, single computation engines constitute a popular design approach that
enables the deployment of diverse models without the overhead of fabric reconfiguration. Nevertheless,
this flexibility often comes with significantly degraded performance on memory-bound layers and resource
underutilisation due to the suboptimal mapping of certain layers on the engine’s fixed configuration. In this
work, we investigate the implications in terms of CNN engine design for a class of models that introduce
a pre-convolution stage to decompress the weights at run time. We refer to these approaches as on-the-fly.
This paper presents unzipFPGA, a novel CNN inference system that counteracts the limitations of existing
CNN engines. The proposed framework comprises a novel CNN hardware architecture that introduces a
weights generator module that enables the on-chip on-the-fly generation of weights, alleviating the negative
impact of limited bandwidth on memory-bound layers. We further enhance unzipFPGA with an automated
hardware-aware methodology that tailors the weights generation mechanism to the target CNN-device pair,
leading to an improved accuracy-performance balance. Finally, we introduce an input selective processing
element (PE) design that balances the load between PEs in suboptimally mapped layers. Quantitative evaluation
shows that the proposed framework yields hardware designs that achieve an average of 2.57× performance
efficiency gain over highly optimised GPU designs for the same power constraints and up to 3.94× higher
performance density over a diverse range of state-of-the-art FPGA-based CNN accelerators.

CCS Concepts: • Computer systems organization→ Reconfigurable computing; • Computing method-
ologies→ Neural networks.

Additional Key Words and Phrases: neural networks, hardware accelerator, weights generation

ACM Reference Format:
Stylianos I. Venieris, Javier Fernandez-Marques, and Nicholas D. Lane. 2022. Mitigating Memory Wall Effects
in CNN Engines with On-the-Fly Weights Generation. ACM Trans. Des. Autom. Electron. Syst. 37, 4, Article 111
(August 2022), 31 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The unparalleled accuracy of convolutional neural networks (CNNs) across a broad range of AI
inference tasks has led to the development of novel applications. With a large portion deployed

∗Both authors contributed equally to this research.

Authors’ addresses: Stylianos I. Venieris, s.venieris@samsung.com, Samsung AI Center, Cambridge, UK; Javier Fernandez-
Marques, j1.fernandez@samsung.com, Samsung AI Center, Cambridge, UK; Nicholas D. Lane, Samsung AI Center, Cambridge
& University of Cambridge, UK, nic.lane@samsung.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
1084-4309/2022/8-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/1234-5678-9012
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/XXXXXXX.XXXXXXX

111:2 Venieris and Fernandez-Marques, et al.

across mobile and embedded devices, there is a need for high-performance, energy-efficient imple-
mentations that can deliver responsiveness and prolonged battery life. Currently, the conventional
computing platforms for CNN inference comprise either CPUs and GPUs [8, 89, 94] or custom
application-specific integrated circuits (ASICs), such as neural processing units (NPUs) [8, 43, 45].
On the one hand, CPU- and GPU-based systems can support diverse CNN models through their
programmability, but penalise performance in order to provide this generality [8]. On the other
hand, ASICs provide significant acceleration under a minimal power envelope [43]. Nevertheless,
the benefits of ASICs typically require the functionality to remain fixed after fabrication, leaving
no room for applying model-specific optimisations [63, 77] or mapping newer CNN models [85].

To provide a balance between flexibility and high performance, numerous CNN accelerators target
reconfigurable hardware platforms, such as field-programmable gate arrays (FPGAs). Currently, the
FPGA-based accelerator landscape spans a wide spectrum, from flexible CNN-specific processors [31,
100, 101] to highly customised streaming architectures [41, 83, 85, 90]. One of the most widely
adopted paradigms that lies in the midpoint of the flexibility-customisation spectrum is the single
computation engine (SCE) [1, 2, 33, 47, 51, 52, 62, 67, 96, 103]. Under this paradigm, a powerful
processing engine is time-shared to sequentially execute the layers of a CNN. This allows for
accelerator’s resources to be reused across both layers and CNN models, without the need to
reconfigure the fabric.
Despite the flexibility of SCEs, their attainable performance is often bounded by two primary

factors: 1) layers with low computation-to-communication ratio that become memory-bound [51,
62, 67] and 2) the suboptimal mapping of diverse layers on the fixed configuration of the SCE that
leads to underutilised processing elements (PEs) [62, 84, 102]. These two obstacles set a hard limit
to the actual sustained performance that this family of accelerators can achieve, indicating an
emerging need for novel solutions to counteract their impact.

Concurrently with the continuing hardware advances, a growing body of work focuses on com-
pressing CNNs through a class of lossy non-structural methods [26, 27, 35, 71, 80, 98]. Orthogonally
to other model simplification techniques such as pruning or quantisation, this group of methods
dictates that the weights of a model are deployed in a compact form and are “inflated" only at run
time. Given that several CNN layers are constrained by the limited off-chip memory bandwidth
of the target computing platforms [51, 62, 67, 84], storing the compressed weights on-chip and
reconstructing them on-the-fly can play a decisive role in alleviating the memory-boundedness
and enabling the better utilisation of the computational resources.

Nevertheless, the novel dataflow and execution scheme of such models brings up a new challenge
regarding their optimised mapping. Existing accelerators have been designed for conventional
deep models, adopting either a streaming or layer-by-layer execution [88]. Hence, despite the
significant potential of on-the-fly models, their different execution paradigm renders conventional
architectures futile in serving them.

This paper presents a novel CNN system that overcomes the withstanding limitations of single
computation engines and enables the efficient and high-performance execution of on-the-fly models.
At the core of the proposed system lies a novel CNN hardware architecture. To alleviate the impact
of the memory wall, we introduce a hardware-based weights generator that is responsible for
efficiently generating the CNN weights on-the-fly. Comprising a custom memory organisation
and a highly optimised datapath, the weights generator is scalable, with tunable parameters that
allow it to be tailored to the needs of the target application, the workload characteristics of the
CNN and, the capabilities of the FPGA device. To counteract the underutilisation of computational
resources due to the suboptimal mapping of diverse layers, we further propose a novel CNN engine
design comprising input selective PEs. Under this design, a subset of PEs is enhanced with efficient
switches that enable neighbouring PEs to perform load-balancing through seamless work-stealing.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:3

Finally, we present a framework for deriving on-the-fly models from pre-trained CNNs and mapping
them on a given FPGA.
The initial work in [87] provided a high-level overview of the proposed framework and its

on-the-fly weights formulation. Moreover, the evaluation solely focused on end-to-end perfor-
mance compared to other FPGA works. In this paper, we first present the complete framework,
encompassing both the algorithmic and hardware aspects (Section 3). As such, we provide a de-
tailed description of the on-the-fly weights generation process and its algorithmic underpinning on
OVSF codes (Section 2.2), and we position the proposed hardware architecture with respect to the
status-quo CNN engines (Section 4).

Moreover, in the initial work, the compression ratios of each CNN layer were manually selected
based on heuristics. In this work, we make steps towards automation by introducing a hardware-
aware scheme for tuning the per-layer compression ratios of OVSF models (Section 6.2). The
proposed method exploits the bottleneck characteristics of each layer in order to generate more
accurately its weights while sustaining high throughput, leading to a better accuracy-performance
trade-off (Section 7.5).
Finally, we present for the first time an in-depth evaluation of various critical aspects of the

proposed framework. These include the evaluation of two techniques to derive on-the-fly models
from vanilla CNNs (Section 7.1.2), a thorough study of the impact of the proposed input selective
PEs (Section 7.4), an extensive comparison with highly optimised designs on embedded GPUs
(Section 7.6) and further comparisons with the most recent state-of-the-art FPGA-based accelerators
(Section 7.2.2).

2 BACKGROUND AND RELATEDWORK
This section first positions the proposed on-the-fly formulation in context with existing optimisa-
tion techniques for CNNs. We continue with a brief historical context for OVSF codes and how
to construct them. Then, we show how orthogonal variable spreading factor (OVSF) codes are
used to construct filters in CNNs and, how they are integrated into the training process. This
section concludes with an overview of the challenges and opportunities of CNN-targeting single
computation engines, which is our paradigm of choice when implementing on-the-fly models on
FPGAs.

2.1 Designing Lightweight Convolutional Neural Networks
The plethora of existing techniques to modify CNNs for faster inference can be categorised into:
pruning [15, 39, 61], which removes redundant parameters; quantisation [7, 24, 28, 44, 53], which
results in compact low-precision models; or, sparsification [14, 30, 93], which leverages compressed
data formats. In addition, a number of frameworks combine several of these techniques. Most
notably: Deep Compression [37] which, given an over-parametrised model, applies pruning, quan-
tisation and Huffman encoding; RedCNN [92] which prunes channels based on an activation
overlap metric; and, more recently, APQ [91], which designs a CNN that meets given computational,
memory and latency constraints through a joint optimisation formulation.

2.2 On-the-Fly Convolutional Neural Networks
Orthogonal to these methods, various works have explored ways of obtaining extremely compact
model representations by factorising the filters in CNNs or by passing these through a multi-
stage compression pipeline. Common to these methods is the need for a decompressing stage that
generates the filters at run time during inference. A selection of such techniques include: [35] that
uses an auxiliary NN to generate each layer’s weights in the main network given an embedding of
the weights. In [71], weight filters are constructed as a dense combination of a set of Fourier Bessels

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:4 Venieris and Fernandez-Marques, et al.

bases that are generated deterministically at run time. Another technique exploiting deterministic
bases was presented in [26, 27, 80], where bases are formed from OVSF binary codes. It enables the
construction of model weights by learning a linear combination of OVSF bases during training.

We label these techniques as on-the-fly since they 1) require a single-step decompression stage
to obtain the filters, 2) this process can be done on-demand, i.e. at each layer and for every input,
and 3) such decompression is lightweight, i.e. it does not require multiple inferences to amortise its
associated costs. In this work, we focus on on-the-fly methods that use compression as a means
to reduce data-movement overheads, balancing the costs of decompressing the model parameters
with the latency savings due to reduced off-chip or main memory accesses.

To this end, this work makes use of OVSF codes to compress filters in a CNN and reconstruct
them during inference in a lightweight manner. Three additional reasons motivated the choice
of this class of codes: 1) OVSF codes are binary and thus can be efficiently stored on-chip [48];
2) their theoretical properties are well studied by the wireless community [10, 72]; 3) they offer good
compression-accuracy trade-off (i.e. lossy compression) in various AI tasks [26, 80]. Nonetheless,
[70] is the only existing FPGA-based OVSF design, presenting solely a direct implementation
specific for communication systems. To effectively use OVSF with CNNs, the underlying hardware
design needs to be tailored and optimised for the CNN dataflow.

2.3 On-the-Fly OVSF CNN Layers
The chosen OVSF codes are a set of mutually orthogonal binary codes, originally designed to split
in the frequency domain signals from different users in W-CDMA-based 3G cellular systems [3].
Using them as channelisation codes allowed for communication channels to remain orthogonal in
multi-user access scenarios, reducing signal interference while dramatically increasing the system
capacity.

These codes can be obtained using Sylvester’s construction algorithm for Hadamard matrices. In
this way, given 𝐻0 = [1] and 𝐻2, subsequent 𝐻2𝑘 expansions are defined as

𝐻2 =

[
1 1
1 −1

]
, 𝐻2𝑘 =

[
𝐻2𝑘−1 𝐻2𝑘−1
𝐻2𝑘−1 −𝐻2𝑘−1

]
= 𝐻2 ⊗ 𝐻2𝑘−1 (1)

where 𝐻2𝑘 is an 𝐿×𝐿 Hadamard matrix, with 𝐿 = 2𝑘 , 𝑘 ∈ N and ⊗ is the Kronecker product. For
𝑘 > 1, each row is an OVSF code fulfilling the properties of being binary and orthogonal to each
other. This will enable us to use them as basis for R𝐿 . An alternative formulation [4] allows for the
construction of OVSF codes as a recursive expansion of a perfect binary tree.
By treating the set of 𝐿 OVSF codes as a basis spanning R𝐿 , we can define the construction

process of an arbitrary real-valued vector 𝑣𝑣𝑣 ′𝑖 as the linear combination of such codes

𝑣𝑣𝑣 ′𝑖 =

⌊𝜌 ·𝐿⌉∑︁
𝑗=0

𝛼
𝑗

𝑖
𝒃 𝑗
𝑖
, 𝐸𝑖 =

𝒗′𝑖 − 𝒗𝑖

22 =

⌊𝜌 ·𝐿⌉∑︁
𝑗=0

𝛼
𝑗

𝑖
𝒃 𝑗
𝑖
− 𝒗𝑖

2

2

< 𝜖 (2)

where 𝛼𝛼𝛼𝑖 = {𝛼0𝑖 , 𝛼1𝑖 , 𝛼2𝑖 , ..., 𝛼𝐿−1𝑖 } are weighting coefficients, 𝑏𝑏𝑏 𝑗
𝑖
is the 𝑗-th OVSF binary code of

length 𝐿 and, 𝜌 ∈ [0, 1] is the ratio of codes to use in order to construct 𝑣𝑣𝑣𝑖 . The expression on
the right measures the difference between 𝑣𝑣𝑣 ′𝑖 and a real-valued standard vector of length 𝐿, 𝑣𝑣𝑣𝑖 .
Intuitively, 𝜖 → 0 as we increase the ratio of binary codes used.

When constructing matrices from OVSF codes or higher-dimensional tensors, a reshaping stage
follows the linear combination shown in Eq. (2). In this way, if the weights tensor of a given
convolutional layer is of shape 𝑁out×𝑁in×𝐾×𝐾 , the construction process using OVSF could be
framed as the concatenation of 𝑁out 𝑁in×𝐾×𝐾 filters using codes of length 𝐿 = 𝑁in𝐾𝐾 and up to
𝐿 of such codes. Here, 𝑁in and 𝑁out stands for the number of input and output channels in the

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:5

OVSF
Generator

...

Linear
combination

Reshape

Weighting coefficients
learnt during training.
One coefficient/scalar
per OVSF code

Reshape vector into
filter tensor shape

Weights Tensor

Layer Weights
Tensor

1

2

3

4

Fig. 1. Constructing filters of a convolutional layer using OVSF codes. With an OVSF code generator outputing binary
codes of length 𝐿

(
1
)
, a 𝐾×𝐾 filter with 𝑁in channels (i.e. of shape 𝑁in×𝐾×𝐾) is obtained by performing a linear

combination
(
2
)
of �̂� = ⌊𝜌 · 𝐿⌉ codes of length 𝐿 = 𝑁in𝐾𝐾 , with 𝜌 ∈ [0, 1]. Then, the resulting 𝐿×1 vector is reshaped

to match the target filter’s shape
(
3
)
. For a convolutional layer with 𝑁out output channels, this process is repeated 𝑁out

times, concatenating the results
(
4
)
.

layer respectively, and 𝐾×𝐾 are the spatial dimensions of the convolutional filter. This scenario is
illustrated in Fig. 1. The set of scalars {𝛼}𝐿

𝑘=1 in each layer are learnt via standard backpropagation
and represent the only learnable parameters in an OVSF layer since the OVSF binary codes
themselves are fixed. A compressed representation of 𝑓𝑖 is obtained when 𝜌<1. Upon deployment,
the filters are first generated and then the main inference computation proceeds as normal.

Due to the construction process of OVSF codes (Eq. 1), 𝐾 in OVSF convolutional layers is limited
to be a power-of-two number. We address this in Sec. 6.1, where we present two methods to enable
the construction of filters with 𝐾 ∈ N , for example with the ubiquitous 𝐾 = 3.

2.4 Challenges of FPGA-based CNN Engines
Until now, a wide array of FPGA-based CNN accelerators have been proposed. In the customisation-
programmability spectrum, existing designs span from custom streaming architectures [41, 85]
and accelerators for quantised [16, 69, 82, 83, 90, 105] and sparse CNNs [32, 40, 59, 68, 79, 104, 106],
up to instruction-based processors [31, 100, 101]. One of the most well adopted paradigms are
the single computation engines [1, 2, 33, 51, 52, 62, 67, 96, 103], due to their balanced trade-off of
programmability and performance. Currently, despite the progress in processing unit design, further
gain in the attainable performance of such engines is hindered by two main factors: i) memory-
bound layers that are dominated by the communication with the external memory [51, 62, 67, 78].
While embedded platforms provide limited bandwidth [21, 64, 86], e.g. less than 4.5 GB/s for Ultra96
and ZC706, sustaining peak bandwidth even on larger devices, such as ZCU104, is nontrivial [64].
This is aggravated as multiple applications are collocated on a single device [13, 86, 97]; and
ii) underutilised PEs due to the mismatch of diverse layer shapes [1, 47, 54, 62, 84, 102].
Memory-centric Designs. The memory bandwidth problem faced by CNN engines has been

studied in previous work. EIE [36] uses the Deep Compression method [37] to compress the weights
of fully connected (FC) layers. However, as FC layers have been mostly abandoned in modern CNNs,
its applicability is limited. Angel-Eye [34] compresses all layers through precision quantisation.
Cambricon-X [104] transfers only the non-zero weights, while Cambricon-S [106] and Scalpel [99]
apply coarse weight pruning, but with significant accuracy drop. CircCNN [23] uses block-circulant
matrices for weights, but requires complex FFT hardware for efficient execution. [22] converts
sparse weights to permuted diagonal matrices, but only targets FC layers. [74] exploits large batch

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:6 Venieris and Fernandez-Marques, et al.

sizes to increase weights reuse and, thus, is not suitable for latency-critical applications that cannot
tolerate batching [84].
Focusing on activations, [9] fuses adjacent layers to cache intermediate activations, while [68]

and Eyeriss [20], [66] employ encoding schemes to minimise their bandwidth footprint. Other
solutions have either relied on large devices [11] and multiple FPGAs [29] to fit all weights on-
chip, or utilised highly customised designs to exploit multi-precision cascades [52] or fine-grained
pruning [59] at the cost of notable accuracy drop.
Tackling PE Underutilisation. So far, a limited number of designs have focused on ii). [75]

addresses underutilisation by grouping CONV layers based on the compatibility of their shapes.
[41] maps each layer to a dedicated compute stage, which can be used only for shallower networks,
but does not scale to the deeper models of today. Furthermore, a limited number of works rely on
FFT-based designs with flexible dataflow [67] and costly ASIC solutions [12, 55, 60, 81] with highly
flexible PE interconnect.
In contrast to these works, we propose an approach that is independent of the CNN engine by

not requiring any modification to the engine architecture itself. unzipFPGA can benefit any existing
single computation engine by augmenting it with its hardware weights generator and enhancing its
PE array with lightweight switches, without affecting the PE’s internal processing units. As such,
unzipFPGA is orthogonal and complementary to quantisation [34], activations’ encoding [20, 68],
fusion [9] and zero-skipping PEs [5, 6, 32, 56, 106].

3 unzipFPGA’S DESIGN FLOW

CNN
Architecture

OVSF Layers
Insertion

OVSF
CNN

OVSF Ratios
Selection

Trainer

Training Set

Trained
OVSF CNN

Optimiser

FPGA
platform

Resource
Constraints

Resource
Model

CNN Performance
Model

DSE

OVSF Model Converter

FPGA Implementation

Fig. 2. Overview of unzipFPGA’s design flow.

Our framework aims to enhance the perfor-
mance of hardware CNN engines, while main-
taining a high level of abstraction for deep
learning developers. Fig. 2 shows a high-level
view of unzipFPGA’s design flow, comprising
two software components: 1) the OVSF Model
Converter and 2) the Optimiser.

As a starting point, the deep learning expert
provides the CNNmodel, expressed in PyTorch,
and the target FPGA platform. The Converter
processes the supplied CNN architecture and
derives an OVSF variant, by transforming the
conventional convolutional layers into OVSF
convolutional (OVSF-CONV) layers. This step
entails i) the replacement of weight filters with a trainable linear combination of OVSF bases,
followed by ii) the selection of each layer’s compression ratio 𝜌 . Next, the OVSF model is passed to
the Trainer, where the model gets trained using the supplied training set.
The Optimiser accepts the trained OVSF CNN and a given FPGA platform and, uses them to

populate the CNN Performance Model and the Resource Constraints, respectively. Importantly, the
Optimiser navigates the hardware configuration space considering resource allocations between the
CNN engine and the weights generator. Upon completion, the design space exploration (DSE) stage
yields the highest performing configuration of unzipFPGA’s architecture for the given CNN-device
pair and the system is deployed on the FPGA.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:7

4 CNN ENGINE DESIGN FOR ON-THE-FLY WEIGHTS
This section starts by reviewing the hardware architecture of a conventional CNN engine, similar
to the ones in [20, 25, 51]. Then, it provides a series of design requirements to enable on-the-fly
weights generation for CNNs and presents our techniques for achieving them.

4.1 Conventional CNN Engine Design
Fig. 3 illustrates a typical CNN engine design. The accelerator consists of an array of processing
elements (PEs) to perform matrix multiplications and convolutions, one input and one output
activations buffer, and a weights buffer. From an operational perspective, the CNN layers are
scheduled sequentially, with pipelining applied between I/O communication and computation to
hide the off-chip memory transfer latency.

Processing Engine: To execute layers of various shapes and types, the core processing engine
comprises an array of PEs for the execution of block matrix multiply (GEMM). Each PE contains a
scalable dot-product circuit with configurable number of multiply-accumulate (MAC) units. By
translating convolutions into matrix multiplication, the engine can process both CONV and FC
layers. To this end, a CONV layer with 𝑁in 𝐻×𝑊 input activations, 𝑁out output channels, 𝐾×𝐾
filters, 𝑝 padding and 𝑆 stride involves the multiplication between an 𝑅×𝑃 activations matrix
and a 𝑃×𝐶 weights matrix to produce an 𝑅×𝐶 output matrix, with 𝑅=

⌈
𝐻+2𝑝−𝐾

𝑆
+ 1

⌉ ⌈
𝑊 +2𝑝−𝐾

𝑆
+ 1

⌉
,

𝑃=𝑁in𝐾
2 and 𝐶=𝑁out.

Off-chip Memory FPGA

D
M
A

Input
Buffer

Weights
Buffer

Unrolled
Input

Unrolled
Weights

Unrolled
Output

PE

..

PE

..

PE

..

CNN Engine

Output
Buffer...

Fig. 3. A conventional CNN engine.

Design-time Parametrisation: The CNN
engine can be scaled based on the workload
characteristics and the resources of the target
FPGA. As such, it is parametrised with respect
to the parameter tuple ⟨𝑇𝑅,𝑇𝑃 ,𝑇𝐶⟩. Each param-
eter determines the tile sizes for each matrix
dimension ⟨𝑅, 𝑃,𝐶⟩, the number of PEs (𝑇𝐶) and
the MAC units within each PE (𝑇𝑃).

Operational Flow: To produce a 𝑇𝑅×𝑇𝐶 out-
put tile,

⌈
𝑃
𝑇𝑃

⌉
tiles from the activations and

weights matrices are processed and accumu-
lated sequentially. A common mapping strat-
egy (Fig. 3) ties 𝑇𝑃 to the MACs per PE to exploit the parallelism within each 𝑇𝑃 -wide dot product,
and 𝑇𝐶 to PEs to parallelise the dot products at each output column. Overall, the rows of the 𝑇𝑅×𝑇𝑃
activations tile are processed in a pipelined manner to maximise throughput. This is equivalent to
an output stationary dataflow [20, 25, 51], which minimises the memory accesses for the output ac-
tivations by caching partial sums on-chip. Nonetheless, unzipFPGA is adaptable to other dataflows
with minimal modifications.

The Data Movement Bottleneck: From a data movement perspective, this approach requires
the transfer of

⌈
𝑃
𝑇𝑃

⌉
tiles of size 𝑇𝑅×𝑇𝑃 for the inputs,

⌈
𝑃
𝑇𝑃

⌉
tiles of size 𝑇𝑃×𝑇𝐶 for the weights, and

one tile of size 𝑇𝑅×𝑇𝐶 for the outputs. To produce all the output tiles, all the data movements are
performed

⌈
𝑅
𝑇𝑅

⌉ ⌈
𝐶
𝑇𝐶

⌉
times. In spite of the compute-bound CONV layers, the external memory

bandwidth often becomes the bottleneck in CNN inference. This is primarily manifested in cases
where: i) a resource-rich FPGA device is targeted. In this case, a large and powerful processing
engine is instantiated and the speed of feeding it with new data constrains the performance; ii) the
CNN layers have a large amount of weights, either due to large kernel sizes or number of filters.
This case often occurs in deeper CNN layers, which are typically of significant width. As such, the

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:8 Venieris and Fernandez-Marques, et al.

Alpha
Buffer

OVSF
Generator

...
...

CU

FPGAGenerated
Weights

D
M
A

Input
Buffer

PE

..

PE

..

PE

..

CNN Engine

Output
Buffer...

O
ff-

ch
ip

 M
em

or
y

CNN-WGen

Fig. 4. CNN engine with on-the-fly weights generation. The weights are dynamically generated and the full
bandwidth is available for inputs and outputs.

weights cannot be stored on-chip and multiple memory transactions have to be issued, putting
pressure on the available bandwidth; iii) high-dimensional input and output activations have to be
transferred, increasing excessively the bandwidth requirements. This typically occurs in earlier
layers of a CNN, where the feature maps dimensions are still large.
As such, there is an emerging need for relieving the data movement burden and address the

impact of hitting the memory wall. In this context, on-the-fly weights generation can be an enabling
factor in extracting higher performance and making more cost-effective use of hardware CNN
engines.

4.2 Devising a Hardware CNNWeights Generator
The objective is to minimise the data movement of CNNs by dynamically constructing the model
weights using only on-chip resources. Importantly, on-the-flyweights generation needs to take place
at run time, in a timely and per-layer fashion, since each CNN layer is a standalone independent
schedulable unit. Moreover, the amount of computational and memory resources assigned to the
weights generator ought to be balanced with the rest of the CNN engine to maximise the throughput
of the accelerator while sustaining high resource utilisation. To that end, bringing forth on-the-fly
weights generation requires devising two major components:

4.2.1 Tiled Weights Generation. Our novel insight is that, to be able to generate weights for layers
of various dimensions, there is a need for a tiling method on top of the weights generation process.
We denote our proposed tiling method by TiWGen. As shown in Fig. 4, TiWGen divides each𝑇𝑃×𝑇𝐶
weights tile into subtiles of size𝑀 , with𝑀 being uniform across the CNN’s layers. Tiling on top of
the weights generation method makes the dataflow of diverse layers identical to each other. With
this approach, the value of𝑀 becomes independent of the CNN architecture and is solely bound by
the resources allocated to the weights generator. As such,𝑀 exposes a tunable trade-off between
weights generation speed and resource consumption.

Alg. 1 describes the internal workings of TiWGen. Initially, the 𝑃×𝐶 weights matrix is partitioned
into

⌈
𝑃
𝑇𝑃

⌉
tiles of size 𝑇𝑃×𝑇𝐶 , with each tile processed sequentially (line 1). Next, each tile is divided

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:9

Algorithm 1: Generation of a layer’s weights using TiWGen

Input: Layer’s weights matrix shape: 𝑃 × 𝐶 = 𝑁in𝐾
2 × 𝑁out

Row and column tile sizes𝑇𝑃 and𝑇𝐶
𝛼 values with 𝛼 ∈ R𝑁in𝑁out

⌈
𝜌𝐾2⌉

Output:Weights matrix𝑾
1 for 𝑡 ← 1 to

⌈
𝑃
𝑇𝑃

⌉
·
⌈
𝐶
𝑇𝐶

⌉
do ⊲ tiles loop - # PIPELINE

2 for 𝑖 ← 1 to
⌈
𝑇𝑃𝑇𝐶
𝑀

⌉
do ⊲ subtiles loop - # PIPELINE

3 subtile𝑡𝑖 ← 0
4 for 𝑗 ← 1 to 𝜌𝐾2 do ⊲ basis vectors loop - # PIPELINE
5 for 𝑘 ← 1 to𝑀 do ⊲ # UNROLL
6 𝑖𝑛𝑐𝑟𝑘 ← vec𝑗 (𝑘) · 𝛼𝑘 ⊲ Multiplier array
7 subtile𝑡𝑖 (𝑘) ← subtile𝑡𝑖 (𝑘) + 𝑖𝑛𝑐𝑟𝑘 ⊲ Adder array
8 end
9 end

10 tile𝑡 ← UpdateTile(tile𝑡 , subtile𝑡𝑖)
11 end
12 𝑾 ← UpdateMatrix(𝑾 , tile𝑡)
13 end

into
⌈
𝑇𝑃𝑇𝐶
𝑀

⌉
subtiles (line 2). After all basis vectors of the current subtile have been processed (lines 4-

9), the associated part of the output tile is updated (line 10) and the algorithm proceeds to the next
subtile. When all subtiles of a tile have been generated, the weights matrix is updated (line 12) and
the algorithm continues to the next iteration until all weights tiles have been constructed.
Applicability to Other Dataflows. Although the presented instance of TiWGen focuses on

output stationary dataflows, our method can be applied to hardware designs that employ other
dataflows. The main modifications comprise i) the order the generated weights and ii) the required
generation rate. For instance, considering Google’s TPU [46] which is the most widely used systolic
array for CNN inference, the accelerator adopts a weight-stationary dataflow. In this case, as the
tile of the weight matrix is reused for several cycles, the OVSF generator would have to generate
weights in longer periods compared to output stationary dataflow and the resource allocation
would be automatically adjusted at the DSE stage accordingly.

4.2.2 Weights Generator Microarchitecture. With the design objectives and constraints of Section 3
in mind, we propose a microarchitectural unit, called CNN-WGen, which is placed within the CNN
engine (Fig. 4) and is responsible for generating the weights in an orderly manner and feeding them
to the processing engine. Fig. 5 illustrates the design. As shown, the unit consists of: i) a vector
compute datapath comprising two vector units (multiplier and adder arrays), ii) the Alpha buffer
storing the 𝛼 values, and iii) the OVSF generator that is responsible for outputting the𝑀-sized basis
vector subtiles as dictated by the TiWGen scheme.

Mapping Strategy. To efficiently map and perform the TiWGen loops, CNN-WGen employs loop
optimisation techniques, annotated in Alg. 1. Namely, loop pipelining and unrolling are employed to
customise the computation patterns and on-chip memory reuse of the weights generator. Pipelining
is applied on the three outer loops over tiles (line 1), subtiles (line 2) and basis vectors (line 4), and
unrolling on the inner loop that processes the𝑀-sized subtile (line 5). To unroll the innermost loop,
CNN-WGen employs two𝑀-wide vector units that perform𝑀-parallel multiplications and additions,
respectively. In this manner, tuning𝑀 can balance the parallelism-resource usage trade-off of the
module.

Parametrised Vector Compute Datapath. As shown in Fig. 5, the vector arithmetic units must
have a fixed size that complies with the resource constraints of the target FPGA and namely the

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:10 Venieris and Fernandez-Marques, et al.

Vector Compute Datapath

OVSF
Generator

Alpha
Buffer

CU

𝑀

𝑁𝑓

. . . .

. . . .

𝑀

𝐾2

…

𝑀

Basis Vector Aligner

…

…

OVSF
FIFO

ci
rc

-s
h

if
t:

 𝑀

𝐾2

𝐾2

𝐾2

…

Basis Vector Aligner

…

…

OVSF
FIFO

ci
rc

-s
h

if
t:

𝐾
2
−

m
o

d
(𝑀
,𝐾

2
)

𝑀

𝐾2 mod(𝑀,𝐾2)

𝐾2

……

𝑀

𝐾2
𝐾2

𝐾2

concat

𝛭 ≤ 𝛫2 𝛭 > 𝛫2

Fig. 5. Microarchitecture of the CNN-WGen module.

available DSP blocks. The multiplier array is connected to the OVSF generator and the Alpha buffer.
For the i-th subtile (line 3 in Alg. 1), the former produces 𝜌𝐾2 basis vectors of size 𝑀 , while the
latter outputs the associated 𝛼 coefficients, both of which are forwarded to the multiplier array in a
pipelined manner. All𝑀 elements are processed in parallel by the𝑀-wide vector units, leading to
the vectorised unrolling of the inner loop on line 5 of Alg. 1. The adder array processes the output
of the multiplier array by accumulating the 𝜌𝐾2 partial results. Finally, when TiWGen proceeds
to the next subtile (i.e. next iteration of the loop on line 2), the control unit (CU in Fig. 5) resets
the accumulators’ state. Overall, the vector compute datapath is design-time configurable with
respect to parameter𝑀 which controls the sizing of the vectors units and balances in this way the
performance-resource usage trade-off of CNN-WGen. The design space exploration of𝑀 is discussed
in Section 5.

Memory Customisation in Alpha Buffer. TiWGen dictates that each subtile contains weights
from 𝑁𝑓 distinct 𝐾×𝐾 filters. To sustain CNN-WGen’s throughput, an equal number of 𝛼s have to be
fetched in parallel from the Alpha buffer. To accomplish this, we design the Alpha buffer as a unified
buffer with customised memory organisation and addressing. Each layer contains 𝑁in𝑁out

⌈
𝜌𝑙𝐾

2
𝑙

⌉
distinct 𝛼 values. As such, the Alpha buffer is broken down to 𝑁Alpha

𝑃
=𝑁𝑓 independent multi-bank

sub-buffers, with a depth of 𝐷Alpha (Eq. (4)) to accommodate 𝑁𝐿 layers.

𝑁𝑓 =

⌈
min(𝑇𝑃 , 𝑀)
𝐾2
max

⌉ ⌊
𝑀

𝑇𝑃

⌋
+mod(𝑀,𝑇𝑃)

⌈
𝑀

𝐾2
max

⌉
(3)

𝐷Alpha =

for each layer︷︸︸︷
𝑁𝐿∑︁
𝑙=1

no. of 𝛼 values︷ ︸︸ ︷
𝑁 𝑙in𝑁

𝑙
out

⌈
𝜌𝑙𝐾

2
𝑙

⌉
𝑁
Alpha
𝑃

(Buffer depth) (4)

where 𝑁𝐿 is the number of layers, 𝑁 𝑙{in,out} the l-th layer’s number of input/output channels and
𝜌𝑙 the compression ratio. Finally, the outputs of the sub-buffers are concatenated and connected
to the multiplier array to provide concurrent access to 𝑁𝑓 coefficients. Finally, if the number of 𝛼
coefficients exceeds the available on-chip memory, the remaining coefficients are transferred from
the off-chip memory.
Rate Matching in OVSF Generator. Following TiWGen, the basis vectors are processed in a

blocked manner with a tile size of𝑀 . This approach leads to two pipelined loops over the
⌈
𝑇𝑃𝑇𝐶
𝑀

⌉
subtiles (line 2) and the 𝜌𝐾2 basis vectors (line 4) and the unrolled loop of processing the𝑀-element

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:11

subtile with the vector units (line 5). To produce the i-th subtile, the OVSF generator feeds the
compute datapath with 𝜌𝐾2 basis vectors that are tiled as dictated by TiWGen’s parameter𝑀 .

In order not to straggle the operation of CNN-WGen, the OVSF generator has to match the rate of
the vector units by feeding them with𝑀 bits/cycle. A conventional design involves statically laying
out the tiled vectors into a single buffer, with𝑀 ports and a depth equal to the number of reads per
tile (i.e. #basis vectors×#subtiles). However, such a monolithic design would impose significant
overheads as the basis vectors would have to be replicated either in the same address (e.g. when
𝑀>𝐾2) or in multiple addresses (e.g. storing rotated versions as required by different subtiles). This
leads to inefficient utilisaiton of the on-chip memory due to excessive replication.

An alternative approach that would avoid the basis vector replication involves the instantiation
of a 𝐾2-deep OVSF memory with each location storing one 𝐾2-bit vector. Such a design requires
significantly lower amount of storage and provides an access rate of 1 vector/cycle by reading
the appropriate address. Nonetheless, to obtain the𝑀-bit subtile from the 𝐾2-bit vectoc, complex
multiplexer selection circuitry has to be instantiated. This approach can affect the maximum clock
rate or add latency cycles to such an extent that any throughput gains would be outweighed.

To alleviate these limitations when mapping TiWGen’s tiling scheme, a custom OVSF generator
was developed. The top-level diagram of the OVSF generator is shown in Fig. 5. It is composed of
three main components: the OVSF FIFO, a basis vector aligner and the output register. By introducing
a FIFO for the OVSF vectors in combinationwith a basis vector aligner, theOVSF generator introduces
a rate-matching mechanism that sustains the processing rate of the vector compute datapath while
efficiently utilising the on-chip memory. The generator performs a different operation depending
on the values of𝑀 and 𝐾2 of layer 𝑖 (Fig. 5).
Initially, the OVSF FIFO stores the (𝐾2

𝑖
𝐾2
𝑖
)-bit basis vectors. The current vector is read from the

FIFO into the top register. If 𝑀≤𝐾2
𝑖
, the𝑀 least significant bits (LSBs) are outputted to the vector

compute datapath. At the same time, the basis vector is processed by the basis vector aligner, which
performs an𝑀-bit left circular shift and writes the rotated vector to the OVSF FIFO. If 𝑀>𝐾2

𝑖
, the

basis vector is self-concatenated
⌊
𝑀

𝐾2
𝑖

⌋
times and written to the output’s LS part. Simultaneously,

the mod(𝑀,𝐾2
𝑖
) LSBs of the basis vector are written to the output’s MSBs and the constructed vector

is passed to the compute datapath. Here, the aligner performs a left circ-shift of 𝐾2
𝑖
-mod(𝑀,𝐾2

𝑖
) bits

and writes the result to the FIFO.
With this approach, when the basis vectors are read again out of the OVSF FIFO after 𝜌𝐾2

𝑖 cycles
(i.e. in the next iteration of the loop on line 2), they are correctly aligned to directly match TiWGen’s
tiling pattern. For instance, after the generation of the red-striped subtile in Fig. 4, the FIFO-read
basis vectors will be correctly aligned in order to generate the blue-striped subtile without the
need for costly selection logic or redundant storage. For CNNs with multiple filter sizes, the basis
vector aligner is instantiated with as many circ-shift options. As the distinct filter sizes are known
a priori, only the required shifting logic is inserted, avoiding expensive generic multiplexers, and
the appropriate per-layer bit-shift is selected at run time.

Overall, the proposed design offers two main benefits. First, it alleviates the redundant replicated
storage of basis vectors and avoids the hardware cost of partitioning multiplexers that would require
excessive LUTs usage. Second, it provides the necessary bandwidth to the vector compute datapath
while efficiently utilising the on-chip memory through the OVSF FIFO and the resource-efficient
aligner design. As the values of 𝐾2

𝑖 for each layer and 𝑀 are known at design time and after the
DSE phase respectively, the OVSF generator can be statically instantiated at compile time.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:12 Venieris and Fernandez-Marques, et al.

4.3 Input Selective PEs for Counteracting Underutilisation

…

…

PE

...

PE

...

PE

...
Weights Buffer

𝑇𝐶

R

R

𝑇𝑃

1

2

3

Fig. 6. unzipFPGA’s input selective PE array for CNNs.

One key limitation of existing CNN engines is that,
when processing compute-bound layers, the layer
dimensions often do not match the fixed processing
engine configuration, leading to underutilisation of
the computational resources and severe performance
penalties [54, 62, 84, 103]. Such a scenario can be ob-
served whenmapping a layer with𝑁out=64 channels
(i.e. 𝐶=64) on an engine with 128 PEs (i.e. 𝑇𝐶=128).
In this case, the PEs would remain idle 50% of the
time, halving the attainable performance.
To alleviate this, we propose input selective PEs,

a design that enables existing PEs to perform
load-balancing through inter-PE work-stealing in a
resource-efficient manner. Fig. 6 shows unzipFPGA’s input selective PEs. The initial PE is aug-
mented with registers and switches. However, not all PEs have the same components; only the PEs
that remain underutilised even for a single layer are further equipped with a compact switch that
selects the inputs to the dot-product circuit. In addition to the normal flow of data, these switches
enable each PE to send its weight to its bottom neighbour. As highlighted in dark blue at the bottom
PE of Fig. 6, the switch on the left of the PE selects its input from two options: i) under normal
operation, the PE is fed with the weight written by CNN-WGen in the weights buffer

(
1
)
; ii) in the

absence of this weight (e.g. due to a mismatch between 𝐶 and 𝑇𝐶), the PE is fed with the weight
passed by the adjacent PE

(
3
)
. In the second case, the weights are propagated along the PE array(

3
)
so that a different weight is used by each augmented PE in each cycle. Moreover, the Input

Buffer (Fig. 4) is reorganised accordingly to provide parallel access to multiple rows.
Effectively, this design works as a load-balancing mechanism that partially unrolls the 𝑇𝑅 di-

mension and thus distributes the work more evenly among the PEs. By restricting connectivity to
adjacent units and enhancing only the underutilised PEs, the additional circuitry is low-overhead
and delivers up to 20% higher performance on compute-bound layers.

5 DESIGN SPACE EXPLORATION
Based on its parametrisation of the processing engine, buffer sizes andweights generator, unzipFPGA
defines a particular architectural design space. To estimate the performance and resource usage of
different configurations, an analytical modelling framework has been developed. At a high-level,
the key decisions for yielding a high-performance configuration of the system are: the allocation
of the on-chip resources between the CNN engine and the weights generator and, the sizes of
the activations buffers. The design-time tunable parameters comprise 1) 𝑀 that determines the
TiWGen’s tile size and the size of CNN-WGen’s vector units, 2) tile sizes𝑇𝐶 and𝑇𝑃 that determine the
number of PEs and MACs per PE, respectively, and 𝑇𝑅 affecting the size of the activations buffers.

5.1 Performance Model
The workload of a CNN with 𝑁𝐿 layers is represented as a sequence of𝑊𝑖=⟨𝑅𝑖 , 𝑃𝑖 ,𝐶𝑖 ⟩ workload tuples
with 𝑖 ∈ {1, ..., 𝑁𝐿}. Given a design point 𝜎=⟨𝑀,𝑇𝑅,𝑇𝑃 ,𝑇𝐶 ⟩, the CNN-WGen’s runtime for generating
the i-th layer’s weights required to compute a (𝑇𝑅 ×𝑇𝐶) output tile is given by

𝑡𝑖CNN-WGen (𝜎,𝑊𝑖) = ⌊𝜌 · 𝑙 ⌋ ·
⌈
𝑇𝑃 · 𝑇𝐶
𝑀

⌉
·
⌈
𝑃𝑖

𝑇𝑃

⌉
(5)

where 𝜌 and 𝑙 are the OVSF ratio and basis length, respectively, and with one factor for each of the
pipelined loops in Algorithm 1. With 𝛼 values transferred upfront and the OVSF method generating

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:13

all weights on-chip, the off-chip memory transfers involve only the input/output activations

𝑡𝑖mem in (𝜎,𝑊𝑖) =
𝑇𝑅 · 𝑃 ·𝑊𝐿

𝑏𝑤in
, 𝑡𝑖mem out (𝜎,𝑊𝑖) =

𝑇𝑅 · 𝑇𝐶 ·𝑊𝐿

𝑏𝑤out
(6)

where𝑊𝐿 is the adopted wordlength, and 𝑏𝑤 {in,out} are the memory bandwidths for transferring
inputs/outputs.

With 𝑇𝐶 and 𝑇𝑃 dimensions unrolled, computing an output tile requires the pipelined processing
of 𝑃𝑖

𝑇𝑃
tiles for each of the 𝑇𝑅 rows. Hence, the processing engine’s runtime for each output tile is

estimated as 𝑡𝑖eng (𝜎,𝑊𝑖) = 𝑇𝑅
⌈
𝑃𝑖
𝑇𝑃

⌉
. With the input selective PEs, the runtime is refined as

𝑡𝑖eng∗ (𝜎,𝑊𝑖) =
(
𝑇𝐶 − 𝐶𝑖 +

⌈
𝑇𝑅 · 𝐶𝑖 − (𝑇𝐶 − 𝐶𝑖) · (𝐶𝑖 + 1)

𝑇𝐶

⌉)
·
⌈
𝑃𝑖

𝑇𝑃

⌉
(7)

where dimension 𝑇𝑅 is partially unrolled by processing rows of 𝑇𝑅 through the underutilised PEs.
Overall, the accelerator forms a pipeline of three coarse stages: the concurrent input transfer

and weights generation, the CNN engine processing and the output transfer. In this context, the
initiation interval of the architecture is given by the maximum initiation interval of the three-stage
pipeline, calculated as

𝐼 𝐼 𝑖 (𝜎,𝑊𝑖) = max
(
max

(
𝑡𝑖mem in, 𝑡

𝑖
CNN-WGen

)
, 𝑡𝑖eng∗ , 𝑡

𝑖
mem out

)
(8)

As such, the total runtime for layer 𝑖 is given by 𝑡𝑖total (𝜎,𝑊𝑖) = 𝐼 𝐼 𝑖 (𝜎,𝑊𝑖)
⌈
𝑅𝑖
𝑇𝑅

⌉ ⌈
𝐶𝑖
𝑇𝐶

⌉
. Thus, for a CNN

with 𝑁𝐿 layers, the workload tuple is𝑊 =⟨𝑊𝑖 | ∀𝑖 ∈ {1, ..., 𝑁𝐿 }⟩ and the throughput in inferences per
sec (inf/s) is estimated as 𝑇 (𝜎,𝑊) = 1/

𝑁𝐿∑
𝑖=1
𝑡𝑖total (𝜎,𝑊𝑖).

5.2 Resource Consumption Model
The primary factor that constrains the mapping of a CNN engine on a given platform is resource
availability. Each candidate configuration has a corresponding resource consumption. We define
the feasible space of our model as the set of configurations that satisfy all the platform-specific
resource constraints. In our context, the main design constraints are the DSPs and on-chip RAM
blocks of the target FPGA. Assuming that all MAC operators are mapped to DSPs, the values of
⟨𝑀,𝑇𝑃 ,𝑇𝐶 ⟩ are constrained as 𝐷MAC × (𝑀 +𝑇𝑃𝑇𝐶) ≤ 𝐷fpga, with 𝐷fpga the available DSPs and 𝐷MAC the
DSPs/MAC. We consider 16-bit fixed-point precision, where 𝐷MAC=1 on the evaluated Xilinx FPGAs.
In terms of on-chip RAM, the accelerator has the I/O and Alpha buffers with wordlength𝑊𝐿

and the binary OVSF FIFO, with a total capacity requirement as given by Eq. (9).(
2(𝑇𝑅𝑇𝑃 +𝑇𝑅𝑇𝐶) + 𝐷Alpha𝑁

Alpha
𝑃

)
𝑊𝐿 + 𝐾2

max𝐾
2
max ≤ 𝐶fpga (9)

where the factor of 2 accounts for double-buffering and 𝐶fpga is the on-chip RAM capacity of the
target device.

To further estimate the consumption of look-up tables (LUTs), we used a set of place-and-route
measurements and fitted linear regression models as a function of unzipFPGA’s tunable parameters.
Overall, we formally capture the resource consumption of a design point 𝜎 by means of vector
rsc(𝜎) that holds the utilised amount of DSPs, BRAMs and LUTs. Similarly, we denote the FPGA
resource vector by rscAvail..

5.3 Configuration Optimisation Framework
To yield the highest performing design for the given CNN-FPGA pair, we cast the DSE task as a
constrained optimisation problem that aims to determine the values of the configurable parameters

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:14 Venieris and Fernandez-Marques, et al.

⟨𝑀,𝑇𝑅,𝑇𝑃 ,𝑇𝐶⟩ that achieve the highest performance for the target CNN and available hardware
resources. Formally, we express this setup as

min
𝜎=⟨𝑀,𝑇𝑅 ,𝑇𝑃 ,𝑇𝐶 ⟩

𝑇 (𝜎,𝑊) s.t. rsc (𝜎) ≤ rscAvail. (10)

where 𝑇 , rsc and rscAvail. are the throughput in inferences per second (inf/s), the resource con-
sumption of the current design point 𝜎 and the resource vector of the target platform, respectively.
Given a CNN-FPGA pair, we perform exhaustive search for different resource allocations between
CNN-WGen and the processing engine. Designs that violate the resource constraints are pruned as
infeasible to accelerate the exploration.

6 DERIVING LIGHTWEIGHT OVSF MODELS
Having presented unzipFPGA’s hardware architecture, its strategy for mapping OVSF models on
the accelerator and its design space exploration process, we now describe important challenges for
constructing efficient OVSF models. The main challenges comprise: i) extracting correctly-sized
filters from OVSF codes, ii) selecting a subset of OVSF vectors to meet a given OVSF ratio for each
layer, and iii) setting the per-layer OVSF ratios themselves. Section 6.1 discusses our approach to i)
and ii), while Section 6.2 introduces our novel hardware-aware scheme for tuning OVSF ratios.

6.1 Practical Considerations to Train OVSF Models
Unlike standard CNNs, architectures using OVSF codes do not learn convolutional filters directly.
Instead, they learn weighting coefficients for each OVSF code representing a filter. However, despite
their simplicity as a straight drop and replacement option for standard convolutional layers, the
nature of OVSF codes and the filter generation process, present two fundamental challenges:
1) OVSF codes are of power-of-two length: This constrains the generation of filters with all 𝑁out,
𝑁in, and 𝐾 being power-of-two integers. While this might be reasonable for the input and output
channel dimensions, it prevents the construction of 3×3 filters, which are ubiquitous in modern
CNN architectures; and 2) choosing a subset of basis: Model compression is only achieved when
OVSF ratio 𝜌 < 1, which raises the question of which bases to choose from the total 𝐿 available for
OVSF codes of length 𝐿. Intuitively, their should be an optimal subset of basis for a given 𝜌 < 1
that allows the learning of more expressive filters.

For 1), we consider between i) utilising the first ⌊𝜌 ·𝐾2⌉ codes and ii) iteratively discarding OVSF
codes based on their associated scalar 𝛼 until the target compression ratio 𝜌 is reached. Compared
to ii), with i) we have a simpler optimization objective at the expense of potentially limiting the
expressivity of OVSF filters. For 2), we consider i) extracting a 3×3 crop from a 4×4 filter and
ii) learning a mapping to a 3×3 filter by means of an average pooling layer. Similarly to the first pair
of solutions, i) represents a simpler training stage at the expense of a reduced effective field over
the OVSF basis when constructing 3×3 filter. In Sec. 7.1.2, we compare both pairs of approaches for
the above challenges.
In certain scenarios, a pre-trained model with standard convolutions might be available or

can be trained very cheaply. In such cases, the formulation in Eq. (2) could be reinterpreted as a
minimisation problem and regress the set of 𝛼𝛼𝛼∗𝑖 that minimise the difference w.r.t the standard filter
𝑓𝑖 as 𝛼𝛼𝛼∗=argmin𝛼

𝑓 − 𝑓

2
2
, which can be implemented as a 2-layer MLP regression stage. We leverage

this strategy when training OVSF models on ImageNet. More details are provided in Section 7.1.3.

6.2 Hardware-Aware Tuning of OVSF Ratios
A critical component of unzipFPGA is the OVSF Ratios Selectionmodule of the OVSF Model Converter
(Fig. 2). In the original work [87], the OVSF ratios (i.e. 𝜌 for each layer) were manually selected in a

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:15

unzipFPGA
Design Flow

OVSF25
Accelerator

Design
Layer-wise

Bottleneck Analysis

OVSF
Ratios
Tuning

HW-aware
OVSF Ratios

New Accelerator
Design

2
3

4

1
OVSF25 Model

OVSF
CNN

5

To trainer

Fig. 7. Overview of the proposed hardware-aware tuning of the OVSF ratios.

coarse, per-block manner, with the objective to reach a given compression ratio while minimising
accuracy degradation. For example, as detailed in Section 7.1.3, to achieve a compression of 50%
in model size, denoted by OVSF50, the hand-tuned ratios were set by the tuple [1.0, 0.5, 0.5, 0.5],
indicating the OVSF ratio for each of the four blocks comprising a ResNet. Lower ratios were
assigned to deeper layers as these contain a larger portion of the model parameters and are known
to be more resilient to compression. The first CONV layer in the network remains untouched
(i.e. not OVSF) as it has been shown to be less resilient to approximations including quantisation [7].
To reach higher compression ratios with minimal accuracy drop, more involved tuning is required.
This can be observed through the OVSF25 variant which achieves 75% compression with diverse
ratios of [1.0, 0.4, 0.25, 0.125]. Nonetheless, this process neither takes into account the impact of
ratio values on hardware performance nor is automated, requiring elaborate tuning.
To alleviate this, we introduce a hardware-aware autotuning scheme for selecting the OVSF

ratios of a given model on a target device. The key insight behind our method is that, for layers
that are either compute- or memory-bound, we can allow the weights generation stage to consume
more cycles by using more OVSF vectors (i.e. using a higher OVSF ratio) without affecting the
processing speed. As such, CNN-WGen will output a better approximation of the layer’s weights,
increasing the model’s expressivity and potentially improving accuracy. With reference to our
performance model (Section 5.1), this case occurs for layer 𝑖 when either the processing engine’s
runtime (𝑡𝑖eng∗) or the off-chip memory transfers (𝑡𝑖mem in or 𝑡

𝑖
mem out) dominate the initiation interval

in Eq. (8). This allows us to allocate more cycles for 𝑡𝑖CNN-WGen by using a higher OVSF ratio and
obtaining a better approximation of the weights.

With this insight, Fig. 7 presents our hardware-aware autotuning scheme is as follows. As a first
step, we run unzipFPGA’s design flow (Fig. 2) using the OVSF25 ratios (e.g. [1.0, 0.4, 0.25, 0.125]
for ResNet) and derive the corresponding accelerator configuration

(
1
)
. Next, we perform a

bottleneck analysis of each layer’s mapping on the accelerator that indicates which stage dominates
the initiation interval

(
2
)
, i.e. whether it is memory-bound (either input or output activation

transfer), compute-bound or weights-generation-bound. For the layers where CNN-WGen is not the
bounding factor, we iteratively increase the OVSF ratios up to the point where the bottleneck does
not shift to the weights generation stage

(
3
)
. This leads to a more balanced pipelining of each

layer, hence increasing accuracy by better utilising the instantiated accelerator. At the end of this
process, the converged set of OVSF ratios are passed as the output of the OVSF Ratios Selection
module (Fig. 2) and the rest of unzipFPGA’s flow is run

(
4
)
. As such, the model is retrained and the

design space exploration is rerun with the new OVSF ratios
(
5
)
, and the final model-accelerator

pair are deployed on the target FPGA. Despite the additional retraining step, we note that the

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:16 Venieris and Fernandez-Marques, et al.

Table 1. Different OVSF ratio selection methods with respect to accuracy and bottleneck stage for ResNet18.

Memory OVSF Ratio Accuracy Layer ID
Bandwidth Selection Method (%) L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19

1.1 GB/s

OVSF25 67.3 Bound IFM
OVSF Ratio 1.0 1.0 1.0 1.0 1.0 0.4 0.4 1.0 0.4 0.4 0.25 0.25 1.0 0.25 0.25 0.125 0.125 1.0 0.125 0.125

uniform-1.0 N/A Bound IFM
OVSF Ratio 1.0

hw-aware-autotuning 68.5 Bound IFM
OVSF Ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25

2.2 GB/s

OVSF25 67.3 Bound IFM IFM IFM IFM IFM C C IFM C C C C IFM C C C C IFM C C
OVSF Ratio 1.0 1.0 1.0 1.0 1.0 0.4 0.4 1.0 0.4 0.4 0.25 0.25 1.0 0.25 0.25 0.125 0.125 1.0 0.125 0.125

uniform-1.0 N/A Bound IFM IFM IFM IFM IFM C C IFM C C C C IFM C C C W IFM W W
OVSF Ratio 1.0

hw-aware-autotuning 68.4 Bound IFM IFM IFM IFM IFM C C IFM C C C C IFM C C C C IFM C C
OVSF Ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.25

4.4 GB/s

OVSF25 67.3 Bound IFM C C C C C C OFM C C C C IFM C C C C IFM C C
OVSF Ratio 1.0 1.0 1.0 1.0 1.0 0.4 0.4 1.0 0.4 0.4 0.25 0.25 1.0 0.25 0.25 0.125 0.125 1.0 0.125 0.125

uniform-1.0 N/A Bound IFM C C C C C C OFM C C W W IFM W W W W IFM W W
OVSF Ratio 1.0

hw-aware-autotuning 67.6 Bound IFM C C C C C C OFM C C C C IFM C C C C IFM C C
OVSF Ratio 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.333 0.333 0.5 0.333 0.333 0.333 0.25 0.25 0.25 0.25 0.25

* IFM: Memory-bound w.r.t. input feature maps | OFM: Memory-bound w.r.t. output feature maps | C: Compute-bound | W: Weights Generation-bound.

training protocol, i.e. all hyperparameters, remains the same throughout, without the need for
further tuning.
In step 3 , the candidate values of ratio 𝜌𝑙 for the 𝑙-th layer lie in

{
𝐿𝑙/𝑛 | ∀𝑛 ∈ [1, 𝐿𝑙]

}
, where

𝐿𝑙 = 𝑁 𝑙in𝐾
𝑙𝐾𝑙 is the layer’s code length (Sec. 2.2). As such, there are |𝐿𝑙 | candidate OVSF ratio

values per OVSF layer. Overall, for a CNN with 𝑁𝐿 OVSF layers, there is a total of
∏𝑁𝐿
𝑙=1 |𝐿

𝑙 | possible
OVSF ratio combinations. With an increase in either the model’s depth or an OVSF layer’s width,
an enumerative exhaustive search quickly becomes computationally intractable. To alleviate this,
we perform a parallel search for all OVSF layers, starting from the OVSF25 configuration. At the
first iteration, we first calculate the throughput ratio between the weights-generation stage and
the bottleneck stage of each layer and set the respective OVSF ratio to the closest feasible value.
Then, we search the neighbouring candidate ratios until we find the maximum value that does not
turn the weights-generation stage into the bottleneck. Throughout our experiments, this process
lead to an average of 5 iterations to converge to the final hardware-aware set of ratios across the
examined models.

Table 1 illustrates the impact of our scheme, denoted by hw-aware-autotuning, using ResNet18
on Z7045 for varying bandwidth availability. In the most bandwidth-constrained case (1.1 GB/s),
OVSF25 is memory-bound, with all layers being limited by the transfer of the input feature maps.
Our method exploits severe memory-boundedness and selectively increases the OVSF ratios, leading
to an accuracy improvement of 1.2pp over OVSF25 with no sacrifice of the processing speed. For
medium bandwidth levels (2.2 GB/s), a number of OVSF25 layers become compute-bound. If we
naively set all OVSF ratios to 1.0 (shown as uniform-1.0), several layers become bound by the
weights generation stage. Instead, with our bottleneck-guided method, the weights are more
accurately generated while no change occurs to the boundedness of each layer. This results in
achieving the same throughput as OVSF25, but with a 1.1pp increase in accuracy. Finally, in the
high-bandwidth case (4.4 GB/s), our method introduces a 0.3pp accuracy gain, without affecting
the hardware performance.
Overall, our OVSF ratio selection method incorporates three features: 1) it is fine-grained by

allowing for different per-layer OVSF ratios within each block. As such, we obtain finer-grained
control over the accuracy-compression trade-off; 2) it bounds the accuracy drop from below by
means of an informed initialisation of the ratio values. By starting from the OVSF25 ratios (i.e.
our most lightweight setting), we guarantee the accuracy’s lowest bound and, by allowing only
increases in OVSF ratios, we ensure that these would only potentially contribute accuracy gains;
and 3) it is hardware-aware as it is guided by the bottleneck analysis of each layer’s processing.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:17

Table 2. FPGA platforms used for evaluation.

Platform Processor LUTs Flip-Flops DSPs BRAM

Zynq 7045 Arm Cortex A9 218,600 437,200 900 2.40 MB
UltraScale+ ZU7EV Arm Cortex A53 230,000 461,000 1,728 4.75 MB

7 EVALUATION
7.1 Experimental Setup
In our experiments, we target two widely used FPGA platforms with varied computational ca-
pabilities and memory resources (Table 2): the Xilinx ZC706 board mounting the mid-tier Zynq
Z7045 and the Xilinx ZCU104 board with the more resource-rich Zynq UltraScale+ ZU7EV. The
two platforms are based on the Xilinx Zynq-7000 SoC and UltraScale+ MPSoC architectures, re-
spectively, integrating a dual-core Arm Cortex A9 CPU and a quad-core Arm Cortex A53 CPU,
respectively, alongside an FPGA fabric on the same chip. Our hardware designs were synthesised
and placed-and-routed with Xilinx Vivado HLS and Vivado Design Suite (v2019.2) and run on
both boards, with operating clock frequencies of 150 MHz for ZC706 and 200 MHz for ZCU104,
respectively. The achieved clock frequency is currently constrained by the technology of the target
device and the use of HLS, which relies on the vendor’s toolchain and does not allow for low-level
optimisations to shorten the critical path.

The corresponding ArmCPUwas used to set up the transactionswith the off-chipmemory, launch
the execution of inference and measure the end-to-end performance of each design. unzipFPGA
provides support for both custom fixed-point and floating-point precisions. For the evaluation,
16-bit fixed-point precision was used, following the practice of the FPGA works we compare with.
The available off-chip memory bandwidth was controlled by using a different number of memory
ports and amount of word packing, spanning from 1.1 GB/s (1×) to 13.4 GB/s (12×).

7.1.1 Benchmarks. We evaluate on CNNs of varying depth, workload and memory footprint.
Each CNN has been selected to impose a different design challenge. In particular, we target the
widely used family of residual networks [38] and map variants of different depths to evaluate the
scalability of our design. Concretely, we use ResNet18, ResNet34 and ResNet50 on the ImageNet
dataset. In addition to image classification, ResNet models are also found as backbone of other
tasks including object detection [50], super-resolution [57] and semantic segmentation [18]. We
also target SqueezeNet1.1 [42], to assess unzipFPGA’s efficacy on a highly optimised network for
resource-constrained devices.

7.1.2 Basis Selection and 3×3 extraction. The proposed on-the-fly formulation using OVSF
codes allows for different strategies for: i) selecting which basis to use when 𝜌<1; and, ii) extracting
3×3 filters from true OVSF filters that are restricted to be of shape 𝐾×𝐾 with 𝐾 being a power-of-
two. In 6.1 we presented two solutions for each of aforementioned considerations. Table 3 shows
our analysis of the different approaches on CIFAR-10 with ResNet18/34. For the basis selection
strategy i), iteratively dropping bases consistently yields higher-accuracy models. For ii), as the
models become more compact (e.g. for OVSF50/25), cropping achieves higher accuracy compared
to the average pooling approach. Thus, we leverage these findings to inform the parametrisation
for ImageNet for the rest of the evaluation.

7.1.3 Training Scheme. We have developed unzipFPGA’s offline flow on top of PyTorch (1.5).
To derive the OVSF models, we modified the official PyTorch-based ResNet by replacing all 3×3
convolutional layers within residual blocks with their OVSF counterparts. In all our experiments,
we employed pre-trained ImageNet models from torchvision (0.6.0). After a regression stage that
transforms standard models into OVSF ones, the models were fine-tuned for 30 epochs using an

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:18 Venieris and Fernandez-Marques, et al.

Table 3. Impact on accuracy for i) each basis selection strategy and ii) method to extract 3×3 filters from 4×4 OVSF
filters. Models trained on CIFAR-10, with ResNet18/34 adapted for this dataset adn the much smaller variants (†) proposed
in [38]. Performing an iterative drop of bases, as opposed to taking the first ⌊𝜌 · 𝐾2 ⌉, consistently results in better models.
As model size is reduced, taking a 3×3 crop from a 4×4 filter performed better than using an average pooling stage.

Model Arch. Basis Filters OVSF100 OVSF50 OVSF25
(baseline) Strategy to 3×3 Param. Acc. Param. Acc. Param. Acc.

ResNet18
93.2% 11.2M

Sequential Crop

19.7

93.9

9.1

93.7

3.6

92.9
Adaptive 93.7 93.8 93.0

Iterative Crop 94.1 93.6 93.6
Adaptive 94.0 93.8 92.3

ResNet18†
91.3% 0.27M

Sequential Crop

0.48

90.8

0.25

90.8

0.15

88.3
Adaptive 91.1 91.2 88.5

Iterative Crop 91.1 91.3 91.4
Adaptive 91.2 91.4 91.0

ResNet34
93.9% 21.3M

Sequential Crop

37.7

94.1

17.6

93.9

7.2

93.4
Adaptive 94.3 94.0 93.4

Iterative Crop 94.1 93.8 94.3
Adaptive 93.8 93.7 93.2

ResNet34†
92.1% 0.46M

Sequential Crop

0.82

92.3

0.43

91.4

0.26

89.3
Adaptive 92.2 91.5 89.2

Iterative Crop 92.3 91.8 92.2
Adaptive 92.4 91.7 91.7

Adam optimiser [49] and learning rate decay every 10 epochs. For each given model, we trained
two OVSF variants following different distributions of ratios 𝜌 for layers in each of the four residual
blocks. First, OVSF50 with ratios=[1.0, 0.5, 0.5, 0.5]; and OVSF25 with ratios=[1.0, 0.4, 0.25, 0.125].
We follow the same procedure and ratios for SqueezeNet’s Fire modules.

7.1.4 Baselines. We introduce two highly optimised single computation engines executing: a) the
vanilla CNN and b) pruned variants. For b), we use a state-of-the-art method [65] which applies
channel pruning based on the first-order Taylor approximation contribution of each filter to the
model’s loss. This process is carried out iteratively until a target compression ratio is reached.
We refer to a pruned model that keeps 82% of the filters as Tay82 and follow the same naming
scheme for other ratios. The baseline architecture comprises the conventional CNN engine design
shown in Fig. 3, with the weights transferred from the off-chip memory into the 𝑇𝑃×𝑇𝐶 weights
buffer, if they do not fit on-chip. Both a) and b) are parametrised with tile sizes ⟨𝑇𝑅,𝑇𝑃 ,𝑇𝐶 ⟩ and
roofline modelling [102] is used to obtain the highest throughput configuration for the target
CNN-FPGA pair.

7.2 Performance Comparison
This section analyses the performance of the proposed frameworkwith respect to both our optimised
baselines and existing FPGA work.

7.2.1 Comparison with Optimised Baselines. Tables 4 and 5 show the achieved validation set
accuracy and actual performance of each design as measured on ZC706 under varying bandwidth
budget. Across bandwidths (1×/2×/4×where 4× is the 4.5 GB/s peakmeasured bandwidth on ZC706),
unzipFPGA’s OVSF50 and OVSF25 designs outperform the faithful baseline by 2.1×/1.3×/1.1× and
2.1×/1.6×/1.2× respectively for ResNet34, and by 1.6×/1.6×/1.24× and 1.4×/1.5×/1.3× respectively for
ResNet18. As bandwidth availability increases, the baseline becomes less memory-bound and the
performance gap closes. Table 6 shows the comparison of unzipFPGA with the faithful baseline for
SqueezeNet on ZU7EVwith peak measured bandwidth of 13.4 GB/s (12×). Both OVSF50 and OVSF25
designs yield increasing throughput gains as the bandwidth becomes more restricted, with OVSF25
sustaining over 57% speedup for up to 4× bandwidth. Under 1× bandwidth, OVSF25 offers minimal

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:19

Table 4. Accuracy and number of parameters for ResNet34 models on ImageNet following different compression schemes.
Performance measured on ZC706 at different memory bandwidths.

Model Compression Params Accuracy Performance (inf/sec)
Arch. Method (millions) (%) (1×, 2×, 4×)

ResNet34 - 21.8 73.3 (8.6, 16.8, 28.7)

ResNet34 Tay82 17.4 72.7 (10.7, 21.0, 35.6)
ResNet34 Tay72 15.1 71.9 (13.3, 25.8, 44.0)
ResNet34 Tay56 9.4 67.8 (18.3, 36.3, 63.8)
ResNet34 Tay45 6.3 63.1 (21.8, 43.4, 79.8)

ResNet34 OVSF50 17.2 72.8 (18.1, 21.8, 31.1)
ResNet34 OVSF25 7.2 71.5 (18.4, 27.3, 33.5)

ResNet34 Tay82+OVSF50 13.2 71.1 (18.6, 30.0, 37.3)
ResNet34 Tay82+OVSF25 6.7 70.6 (18.8, 31.0, 38.9)
ResNet34 Tay72+OVSF50 11.9 70.3 (18.8, 32.0, 40.2)
ResNet34 Tay72+OVSF25 4.9 68.9 (18.9, 33.3, 42.0)

Table 5. Accuracy and number of parameters for ResNet18 models on ImageNet following different compression schemes.
Performance measured on ZC706 at different memory bandwidths.

Model Compression Params Accuracy Performance (inf/sec)
Arch. Method (millions) (%) (1×, 2×, 4×)

ResNet18 - 11.7 69.8 (12.0, 23.5, 40.1)

ResNet18 Tay88 9.1 68.8 (14.3, 28.0, 46.4)
ResNet18 Tay82 7.9 67.3 (14.3, 27.8, 45.4)
ResNet18 Tay72 6.0 64.8 (18.2, 35.3, 57.6)
ResNet18 Tay56 3.7 58.3 (23.8, 47.3, 82.2)

ResNet18 OVSF50 9.1 69.2 (19.4, 33.8, 49.9)
ResNet18 OVSF25 4.1 67.3 (19.4, 34.8, 51.0)

ResNet18 Tay82+OVSF50 6.3 66.2 (24.5, 43.2, 57.9)
ResNet18 Tay82+OVSF25 2.8 64.4 (24.5, 43.6, 59.7)

additional gains. This is because, below a compression ratio, even though the memory needs are
further reduced, activations begin to dominate I/O, and hence further weights reduction does
not provide significant benefits. Activations compression techniques [20, 68] can be orthogonally
combined to obtain further gains.

Based on our evaluation using SqueezeNet, we observe that computation can take place fast due
to its lighter workload. As such, the attainable performance depends on how rapidly we can feed
the CNN Engine with new inputs. Specifically, for the 4× bandwidth configuration, all layers of
SqueezeNet are memory-bound. On the other hand, at 12× bandwidth, 88% of the layers become
compute-bound. As such, when there is restricted or medium availability of memory bandwidth,
unzipFPGA significantly improves performance through our weights generation approach, with
78%, 74% and 55% higher throughput for the 1×, 2× and 4× bandwidth configurations, respectively
(Table 6). This improvement gradually decreases as the available bandwidth increases, with 15%
gain at 12× bandwidth.

Comparison with Pruned Baselines. Compared to the pruned baselines, unzipFPGA’s OVSF
models are more resilient at high compression ratios while resulting in similar accuracy at lower
compression ratios. Informed by the analysis in Table 3, OVSF models are trainined to extract
a 3×3 from a 4×4 and, to iteratively discard OVSF basis until the target compression ratio 𝜌 for
each layer is reached, as first discussed in Sec. 7.1.2. In terms of throughput, unzipFPGA delivers

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:20 Venieris and Fernandez-Marques, et al.

Table 6. Comparing unzipFPGA with faithful baseline on SqueezeNet on ImageNet. Performance measured on the
UltraScale+ ZCU104 platform at different memory bandwidths.

Model Compression Params Accuracy Performance (inf/sec)
Arch. Method (millions) (%) (1×, 2×, 4×, 12×)

SqueezeNet - 1.24 58.2 (72.9, 145.2, 290.4, 687.4)

SqueezeNet OVSF50 1.07 57.6 (129.8, 252.9, 452.1, 792.1)
SqueezeNet OVSF25 0.86 57.1 (129.8, 252.9, 456.8, 800.6)

Table 7. Comparison with prior FPGA work on ResNet18 (4.03 GOps), ResNet34 (7.40 GOps) & SqueezeNet (0.78 GOps).

Comparison with: Compiler-based Design Compression-based Design Light-CNN-tailored Design Multi-Accelerator Designs

ResNet18 [17] unzipFPGA:
ResNet18*

Sparse ResNet34 [59]
using Deep Compression

unzipFPGA:
ResNet34* SqueezeNet [100] SqueezeNet [75] unzipFPGA:

SqueezeNet*

FPGA Z7045 Z7045 Z7045 Z7045 K325T V485T V690T ZU7EV
Clock (MHz) 250 150 166 150 200 170 170 200
Precision 16b fixed 16b fixed 16b fixed 16b fixed 8b fixed 16b fixed 16b fixed 16b fixed
DSPs† 900 900 900 900 840 2800 3600 1728
Logic Capacity 218.6 kLUTs 218.6 kLUTs 218.6 kLUTs 218.6 kLUTs 203.8 kLUTs 303.6 kLUTs 433.2 kLUTs 230.0 kLUTs
Block RAM 2.40 MB 2.40 MB 2.40 MB 2.40 MB 1.95 MB 4.52 MB 6.46 MB 4.75 MB
DSP Util.† 28.4% 100% 56.8% 100% 83.8% 80% 80% 100%
inf/s 21.38 49.90 27.84 31.1 420.90 913.40 1173.00 792.20
inf/s/DSP† 0.0237 0.0576 0.0309 0.0369 0.2505 0.3260 0.3258 0.4584
inf/s/Logic 0.0978 0.2282 0.1273 0.1422 2.0652 3.0085 2.7077 3.444

* using OVSF50, ** batch size = 1, † 18×18, 19×18 and 25×18 DSP configurations, inf/s/DSP is adjusted based on precision for fair comparison (multiplied by 0.5 for 8b).

Table 8. Comparison with prior FPGA work on ResNet50 (8.41 GOps).

Comparison with: Compiler-based Designs CNN-to-FPGA Toolflows CNN-tailored Designs Overlay Designs Cloud-based Designs Interconnect-aware
Designs

Full-stack-optimised
Designs

Snowflake [31] unzipFPGA:
ResNet50* xDNN [95] DNNVM [96] ALAMO [62] ResNetAccel [63] FTDL [76] Cloud-DNN [19] Scaling the

Cascades [73] Full-Stack [58] unzipFPGA:
ResNet50*

FPGA Z7045 Z7045 VU9P ZU9 Arria 10 GX1150 Stratix 10 GX2800 Arria 10 GX1150 VU125 VU9P VU37P Arria 10 GX1150 ZU7EV
Clock (MHz) 250 150 500 500 240 150 300 650 125 650 200 200
Precision 16b fixed 16b fixed 8b fixed 8b fixed 16b fixed 16b fixed 16b fixed 16b fixed 16b fixed 8b fixed 8b fixed 16b fixed
DSPs† 900 900 6840 2520 3036 11,520 3036 1200 3036 9024 3036 1728
Logic Capacity 218.6 kLUTs 218.6 kLUTs 1182.0 kLUTs 274.0 kLUTs 427.2 kALMs 933.0 kALMs 427.2 kALMs 716.0 kLUTs 1182 kLUTs 1304 kLUTs 427.2 kALMs 230.0 kLUTs
Block RAM 2.40 MB 2.40 MB 9.48 MB 4.01 MB 6.60 MB 28.62 MB 6.60 MB 11.075 MB 43.23 MB 42.61 MB 6.60 MB 4.75 MB
DSP Util.† 28.4% 100% 100% 83.8% 80% 80% 56.8% 100% 80.2% 95% 97% 100%
inf/s 17.7 28.18 153.57 80.95 71.38 77.55 33.93 151.22 71.94 766 197.23 71.71
inf/s/DSP† 0.0196 0.0313 0.0112 0.016 0.0235 0.0067 0.0111 0.1260 0.0105 0.0424 0.0324 0.0415
inf/s/Logic 0.0809 0.1289 0.0649 0.1477 0.1671 0.0831 0.0794 0.2112 0.0608 0.5874 0.4616 0.3117

* using OVSF50, ** batch size = 1, † 18×18, 19×18 and 25×18 DSP configurations, inf/s/DSP is adjusted based on precision for fair comparison (multiplied by 0.5 for 8b).

faster processing at more constrained bandwidths. Concretely, ResNet34-OVSF50 is 80% faster
than Tay82 at 1× bandwidth, with less than 1 percentage point (pp) accuracy drop. Despite being
almost identical in terms of model size and accuracy, Tay82’s approach, which prioritises the
pruning of layers with the least accuracy impact, leads to the pruning of mostly compute-bound
layers when targeting ResNet34. On the other hand, ResNet34-OVSF50 compresses more effectively
memory-bound layers, leading to significantly higher throughput at low bandwidths. A similar
pattern is observed for ResNet18. At higher compression ratios, ResNet34-OVSF25 yields 3.7 pp
higher accuracy than Tay56, despite using 25% fewer parameters.

To explore the benefits of combining unzipFPGA’s OVSF execution scheme with channel pruning,
we derive, train and map on unzipFPGA Tay-OVSF models. This results in competitive lightweight
models that are not attainable through pruning alone. For instance, ResNet18 with Tay82+OVSF25
is 25% smaller than ResNet18-Tay56 and achieves 6.1 pp higher accuracy, while achieving 34.6%
and 23.5% higher throughput over ResNet18-Tay72 with less than 0.5 pp accuracy drop.

7.2.2 Comparison with Existing FPGA Designs. To assess the performance of the proposed
framework with respect to existing FPGA work, we perform a number of comparison with a broad
range of state-of-the-art works that optimise CNN inference from different aspects. These span
accelerators that aggressively apply compiler techniques [17, 31, 95, 96], the highest performing
FPGA-based accelerators for sparse [59] and lightweight CNNs [100], a multi-accelerator design that
addresses PE underutilisation for SqueezeNet [75], a state-of-the-art CNN-to-FPGA toolflow [62],
an optimised overlay architecture [76], a highly customised accelerator for residual networks [63], a

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:21

cloud-optimised framework [19], a CNN accelerator designed in an interconnect-aware manner [73]
and an accelerator that applies full-stack optimisations [58].
Table 7 lists the performance results for ResNet18/34 and SqueezeNet. On Z7045, unzipFPGA

achieves 2.33× and 1.12× higher throughput than [17] and [59], respectively. For SqueezeNet,
our design delivers 1.83× and 1.67× higher performance density in inf/s/DSP and inf/s/Logic
than Light-OPU [100]. Compared to the multi-accelerator design [75] that also addresses the PE
underutilisation, unzipFPGA yields 1.40× higher inf/s/DSP and 1.14×-1.27× higher inf/s/Logic
despite having the same (V48T-based design [75]) or 36% lower (V690T-based design [75]) on-chip
memory budget.
The original ResNet50 reaches 76.15% accuracy with a model size of 25.56M parameters. With

unzipFPGA’s ResNet50-OVSF50 variant improves accuracy to 76.23% while having 10% fewer
parameters (22.84M). Table 8 presents the measured performance results for ResNet50. On Z7045,
unzipFPGA outperforms Snowflake by 1.59× in inf/s. Compared with designs on larger devices,
our design achieves higher performance density (inf/s/DSP) by 3.69×, 2.58×, 1.76×-6.16×, 3.17×
and 3.94× over xDNN, DNNVM, ALAMO, ResNetAccel and Cloud-DNN. The overlay-based FTDL
reaches higher inf/s/DSP and 1.47× lower inf/s/Logic, but targets a platform with 2.33× larger
on-chip memory and 2× higher bandwidth, both of which substantially reduce the off-chip memory
accesses and the associated latency. Similarly, compared to the interconnect-aware design of [73],
unzipFPGA reaches 97.8% of its inf/s/DSP, despite using a platform with 8.9× smaller on-chip
memory. Finally, unzipFPGA outperforms the full-stack-optimised accelerator of [58] by 1.28× in
inf/s/DSP.
Discussion. Based on the presented evaluation, unzipFPGA consistently outperforms a wide

range of FPGA-based accelerator designs, in spite of their diverse designs. As such, our framework
delivers an average throughput gain of 2.23× (2.05× geo. mean) over designs that aggressively
apply compiler optimisations on fixed accelerators [17, 31, 95, 96] and, at the same time, achieves an
average inf/s/DSP gain of 2.5× (2.41× geo. mean) over highly customised CNN-tailored designs [63,
100] and 3.94× over the cloud-optimised mapping of Cloud-DNN. A notable comparison is with the
sparse CNN accelerator for ResNet34 presented in [59], with unzipFPGA achieving 12% throughput
gain. It should be noted that the sparse CNN accelerator applies Deep Compression [37] to sparsify
the target CNN, employs a specialised dataflow and modifies the underlying PEs in order to
extract high performance. In contrast, unzipFPGA improves the performance of CNN engines while
affecting neither the selected dataflow nor the internal design of the PEs, and still delivers 12%
higher throughput than the sparse CNN accelerator.

7.2.3 Resource Usage. We select unzipFPGA and baseline designs with up to 1-pp accuracy
drop and compare their post place-and-route resource usage on Z7045, reported in [DSPs, BRAM,
LUTs] tuples for 4× bandwidth. For ResNet34, the faithful baseline consumes [99%,83%,77%], Tay82
[99%,79%,77%], OVSF50 [100%,81%,78%] and Tay82+OVSF50 [100%,87%,81%]. For ResNet18, the faithful

Table 9. Resource usage breakdown of unzipFPGA’s designs.

Design Config. Platform Resource Type CNN-WGen CNN Engine

ResNet18-OVSF50 ZC706 DSPs 7.5% 92.5%
LUTs 1% 74%

ResNet34-OVSF50 ZC706 DSPs 11.3% 88.7%
LUTs 3% 75%

ResNet50-OVSF50 ZC706 DSPs 11.1% 88.9%
LUTs 3% 75%

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:22 Venieris and Fernandez-Marques, et al.

78

1
8

.4

1
8

.5

1
3

.5

1
2

.9

6
1

.3

4
4

2
4

.6

1

6
1

.3

4
8

.2

2
7

.3

1

0

10

20

30

40

50

60

70

1x 2x 4x 12x

Sp
ee

d
u

p
 /

 B
as

el
in

e
(%

)

Off-chip Memory Bandwidth

ResNet18 – Z-7045
Tay82 OVSF50 OVSF25

(a) ResNet18 - Z7045

77

1
3

.8

1
3

.9

1
4

.4

1
2

.2

3
3

.7

3
4

1
7

.7

1

4
3

.5

4
3

.8

3
4

.1

1

0

10

20

30

40

50

60

70

1x 2x 4x 12x

Sp
ee

d
u

p
 /

 B
as

el
in

e
(%

)

Off-chip Memory Bandwidth

ResNet18 – zu7ev

Tay82 OVSF50 OVSF25

(b) ResNet18 - ZU7EV

80

2
5

.3

2
5

.1

2
4

2
3

.2

1
1

1
.3

2
9

.9

8
.1

1

1
1

4
.5

6
2

.8

1
6

.6

1

0

20

40

60

80

100

120

140

1x 2x 4x 12x

Sp
ee

d
u

p
 /

 B
as

el
in

e
(%

)

Off-chip Memory Bandwidth

ResNet34 – Z-7045
Tay82 OVSF50 OVSF25

(c) ResNet34 - Z7045

79

1
6

.4

1
5

.7

1
8

4
5

.4

9
4

.1

8
1

.6

3
6

.5

1
1

.1

9
4

.1

9
1

.1

4
4

.7

2
0

.7

0

20

40

60

80

100

120

140

1x 2x 4x 12x

Sp
ee

d
u

p
 /

 B
as

el
in

e
(%

)

Off-chip Memory Bandwidth

ResNet34 – zu7ev
Tay82 OVSF50 OVSF25

(d) ResNet34 - ZU7EV

Fig. 8. Speedup over optimised baselines when varying the available off-chip memory bandwidth.

baseline [78%,99%,70%], Tay88 [78%,99%,69%], OVSF50 [100%,87%,75%] and Tay82+OVSF50 [100%,83%,80%].
For ResNet50, OVSF50 on ZU7EV consumes [100%,87%,78%]. Finally, the input selective PE mecha-
nism adds a minimal LUTs overhead of less than 7%. We further report the breakdown of resource
consumption between CNN-WGen and the CNN Engine in Table 9. We observe that, using our per-
formance model, the DSE stage is able to balance the allocation of DSPs between the two modules.
Moreover, the LUT overhead of the weights generator is minimal compared to the CNN Engine,
providing a beneficial trade-off.

7.3 Sensitivity to Off-Chip Memory Bandwidth
Fig. 9 shows the impact of varying off-chip memory bandwidth over performance on the two target
platforms. The figure compares the speedup of unzipFPGA and the Tay82 baseline over the vanilla
baseline when varying the external memory bandwidth from 1× to 12×. The bandwidth’s impact is
most prominent on the larger ZU7EV, where the performance gains are sustained higher across
1×-4×. In the case of the mid-tier Z7045, we observe a sharper drop in the speedup as the bandwidth
increases. This is due to the more limited computational resources of Z7045, which makes most
CNN layers compute-bound. In contrast, the abundance of computational resources on ZU7EV
makes the CNN layers more memory-bound. For instance, at 4× bandwidth (4.5 GB/s), the vanilla
ResNet18 baseline yields DSP utilisation of 71% on the compute-bound Z7045 and 53% on the more
memory-bound ZU7EV. In this case, unzipFPGA significantly improves both cases by mapping
ResNet18-OVSF25 with 89% and 71% DSP utilisation. As a result, unzipFPGA sustains its gains
across a wider range of bandwidths and outperforms Tay82, until the bandwidth-abundant case
(12×) where computational resources become the critical factor. In this case, Tay82’s lower number
of operations due to pruning leads to higher performance.

Across the designs, the input selective PEs contribute an additional speedup of up to 20%, with
varying gains depending on the CNN-FPGA pair and the available bandwidth. For ResNet34-
OVSF25 on ZU7EV, disabling this mechanism leads to 0/13.9/3.3/5.9% lower throughput for the

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:23

Table 10. Ablation study of input selective PEs.

Model FPGA Input Selective PEs Performance
Arch. Platform without with Gain

OVSF50 Z7045 49.9 inf/s 49.9 inf/s 1.00×
ResNet18 OVSF25 Z7045 50.4 inf/s 51.0 inf/s 1.01×

OVSF50 ZU7EV 124.1 inf/s 124.1 inf/s 1.00×
OVSF25 ZU7EV 135.2 inf/s 135.2 inf/s 1.00×

OVSF50 Z7045 25.4 inf/s 31.1 inf/s 1.22×
ResNet34 OVSF25 Z7045 33.5 inf/s 33.3 inf/s 0.6%

OVSF50 ZU7EV 81.1 inf/s 81.1 inf/s 1.00×
OVSF25 ZU7EV 72.4 inf/s 88.0 inf/s 1.21×

OVSF50 Z7045 23.7 inf/s 27.0 inf/s 1.14×
ResNet50 OVSF25 Z7045 23.7 inf/s 28.1 inf/s 1.18×

OVSF50 ZU7EV 63.1 inf/s 71.7 inf/s 1.13×
OVSF25 ZU7EV 68.5 inf/s 77.8 inf/s 1.13×

SqueezeNet OVSF50 ZU7EV 724.2 inf/s 792.2 inf/s 1.09×
OVSF25 ZU7EV 731.4 inf/s 800.6 inf/s 1.09×

Average 1.12×
Geo. Mean 1.11×

four bandwidths, with a similar pattern observed for the rest of the CNNs. Our input selective PEs
effectively improve the performance of suboptimally mapped layers in compute-bound settings,
whereas no gain is obtained for the most bandwidth-constrained case (1×) where the designs are
severely memory-bound, limiting further improvements through higher PE utilisation.

7.4 Impact of Input Selective PEs
Here, we evaluate the impact of input selective PEs on the achieved performance. This is investigated
by implementing unzipFPGA’s selected hardware design for each of the benchmark CNNs with
and without the input selective PEs and comparing the achieved performance, measured on the
two target FPGA platforms. When the input selective PEs are omitted, we call the designs ablated.
Table 10 presents the achieved performance gains between the two designs.

The PE-enhancing mechanism contributes varying throughput gains, yielding up to 22% faster
inference and an average improvement of 12% (11% geo. mean). For ResNet18, the ablated designs
already sustain high DSP utilisation with ResNet18-OVSF50 and -OVSF25, reaching 90% and 86.5% of
the theoretical peak performance of Z7045 and ZU7EV, respectively. On the other hand, the ablated
ResNet34-OVSF50 design on Z7045 achieves only 69.6% of the theoretical peak throughput. Similarly,
the ablated ResNet34-OVSF25 design on ZU7EV achieves 77.5% of the theoretical performance. In
both cases, the input selective PEs are able to substantially increase the DSP utilisation, with the
enhanced CNN engines achieving 85.1% and 94.2% of the peak performance, respectively.
A similar effect is observed for ResNet50 and SqueezeNet. The ablated designs yield 73.8% of

the theoretical peak performance for both OVSF50 and OVSF25 on Z7045, and 76.7% and 83.3%
for OVSF50 and OVSF25, respectively, on ZU7EV. In this case, our input selective PEs are able
to improve the DSP utilisation, achieving 84.1% and 87.4% of the peak throughput on Z7045 for
OVSF50 and OVSF25, respectively, and 87.2% and 94.7% for OVSF50 and OVSF25, respectively, on
ZU7EV. Finally, for SqueezeNet, the input selective PEs improve the measured throughput from
73.2% to 80.1% of the peak performance for OVSF50 and from 73.9% to 80.9% for OVSF25 on ZU7EV.
As such, enhancing a CNN engine’s PEs with our proposed input selectivity technique alleviates
the resource underutilisation due to the diverse layer shapes within a CNN. In the cases where our
technique is estimated to provide minimal gains (i.e. <5%) and its usage is not justified, unzipFPGA
opts for omitting it to save LUT resources.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:24 Venieris and Fernandez-Marques, et al.

54.0 54.5 55.0 55.5 56.0 56.5
Execution Time (ms)

71.0

71.5

72.0

72.5

73.0

Ac
cu

ra
cy

 (%
)

Low Bandwidth
uniform-0.5
uniform-0.25
manual-OVSF50
manual-OVSF25
hw-aware autotuning

(a) ResNet34 - Z7045 with Low Bandwidth

36 38 40 42 44 46
Execution Time (ms)

71.0

71.5

72.0

72.5

73.0

Ac
cu

ra
cy

 (%
)

Mid Bandwidth
uniform-0.5
uniform-0.25
manual-OVSF50
manual-OVSF25
hw-aware autotuning

(b) ResNet34 - Z7045 with Medium Bandwidth

29.5 30.0 30.5 31.0 31.5 32.0 32.5
Execution Time (ms)

71.0

71.5

72.0

72.5

73.0

Ac
cu

ra
cy

 (%
)

High Bandwidth
uniform-0.5
uniform-0.25
manual-OVSF50
manual-OVSF25
hw-aware autotuning

(c) ResNet34 - Z7045 with High Bandwidth

Fig. 9. Accuracy-execution time trade-off for different OVSF ratio selections. Hardware-aware autotuning closes the
performance gap between OVSF50 and OVSF25 while being within 1pp of the original model’s accuracy (73.3%).

7.5 Hardware-Aware vs. Manual Tuning of OVSF Ratios
Next, we evaluate the effectiveness of our hardware-aware tuning of OVSF ratios in yielding
designs with improved accuracy-performance trade-off. To this end, we compare against two
ratio selection methods: i) uniform-𝜌 which uses the same ratio 𝜌 across all layers, with the
exception of the first CONV layer. This baseline represents a brute-force approach of setting the
OVSF ratios; and ii) manual-OVSF50 and manual-OVSF25 which use the manually selected ratios
detailed in Section 7.1.3 to achieve 50% and 75% reduction in model size from the original model.
This baseline constitutes an optimised hand-engineered method. We perform the comparison by
implementing ResNet18 and ResNet34 using both the hardware-aware and the baseline flows for
different bandwidth availability and comparing the achieved performance, measured on Z7045.
Figure 9a shows the achieved accuracy and execution time measured on the target FPGA and

depicts how our method, denoted by hw-aware autotuning, yields Pareto-optimal designs that
were previously unattainable. For ResNet34, our method sustains the same performance as the
fast OVSF25 design across all memory bandwidths. However, it additionally improves OVSF25’s
accuracy by 0.8pp, thus outputting design that are within 1pp of the original model’s accuracy (72.3%
for all three bandwidths vs 73.3% for the vanilla ResNet34). At the same time, it is consistently faster
than the coarse uniform-0.5. We obtain similar results for ResNet18, with the same processing

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:25

1
.0

0 1
.2

9

1
.8

3

1
.0

0

1
.7

6

2
.5

6

1
.0

0

2
.7

0

5
.3

2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

En
er

gy
 E

ff
ic

ie
n

cy
 G

ai
n

 /
 T

X
2

 (
x)

ResNet18 (TX2)
unzipFPGA (ZC706)
unzipFPGA (ZCU104)

GPU

ResNet18 ResNet50 SqueezeNet

Fig. 10. Energy efficiency comparison between unzipFPGA and TX2 designs.

speed as OVSF25 and accuracy gains in the range of 0.3pp-1.2pp (0.86pp average gain across
bandwidths) over OVSF25. Across all cases, the uniform-𝜌 baselines were either unnecessarily
slow (uniform-0.5) or low in accuracy (uniform-0.25), further advocating for a principled method
of selecting the OVSF ratios.

By exploiting the bounding factor of each layer, our hardware-aware scheme selectively allows
for a longer weights generation stage without affecting the processing speed. As such, we can
obtain a better approximation of the weights and sustain high throughput. As shown through our
experiments, the hardware-aware methodology yielded competitive designs, performing either
better or in par even against highly optimised hand-tuned configurations (OVSF50 and OVSF25).

7.6 Comparison with Embedded GPU
With the majority of CNNs deployed for inference on embedded and mobile devices, our evaluation
focuses on the embedded space. In power-constrained applications, the main metrics of interest
comprise: 1) the absolute power consumption and 2) the energy efficiency in performance-per-watt.
In this respect, we investigate the energy efficiency of unzipFPGA in relation to the widely used
high-performance NVIDIA Jetson TX2 platform. In all cases, for unzipFPGA we use the OVSF50
variant with less than 1-pp accuracy drop.

For the performance evaluation on TX2, we use NVIDIA TensorRT as supplied by the JetPack 4.1.1
package. TensorRT is run with the NVIDIA cuDNN library and 16-bit half-precision floating-point
arithmetic (FP16), which enables the highly optimised execution of layers. Across all platforms,
each CNN is run 100 times to obtain the average throughput. Furthermore, power measurements
for the GPU and FPGAs are obtained via a power monitor on the corresponding board. In all cases,
we subtract the average idle power from the measurement to obtain the power due to benchmark
execution. The idle power of the FPGA platforms is measured at the board level with no design
programmed in the FPGA fabric, so that the clock tree power and the power leakage of the chip
are also included in the run-time power due to benchmark execution. Across all experiments, we
used a batch size of 1, as is typical in mobile and embedded settings.
Tegra X2 mounts a 256-core GPU with native support for FP16 arithmetic which supports a

range of operating modes with different clock frequencies and power consumption. To perform a
fair comparison with respect to energy efficiency in terms of performance-per-watt, we configure
the GPU with the maximum energy efficiency mode (Max-Q) which sets the frequency of the GPU
at 850 MHz and configures all components of TX2 to achieve the best power-throughput trade-off.
Fig. 10 presents the conducted comparison. unzipFPGA achieves an energy efficiency improvement
over TX2 of up to 5.32× in inf/s/Wwith an average of 2.57× (2.31× geo. mean) across the benchmarks.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:26 Venieris and Fernandez-Marques, et al.

As a result, unzipFPGA consistently demonstrates significant gains in performance-per-watt across
the benchmarks over highly optimised embedded GPU implementations.

8 CONCLUSION
In this work we have presented unzipFPGA, a framework for FPGA-based CNN accelerators that
mitigates the limitations that prevent single computation engines from attaining high resource
utilisation and throughput. By generating the layer weights on demand and selectively balancing
the PE load, unzipFPGA outperforms both status-quo and pruned CNN engines for the same
bandwidth, while largely improving performance density compared to diverse state-of-the-art CNN
accelerators. Furthermore, we demonstrated the superiority of models optimised with unzipFPGA
in terms of energy efficiency compared to these being deployed on embedded GPU platforms.
The benefits of the proposed on-the-fly formulation brought the largest gains at reduced memory
bandwidths, which we envision to be a turning point towards enabling multi-tenant FPGA-based
CNN models running concurrently and sharing the same off-chip memory.

REFERENCES
[1] Mohamed S Abdelfattah, Łukasz Dudziak, Thomas Chau, Royson Lee, Hyeji Kim, and Nicholas D Lane. 2020. Best of

Both Worlds: AutoML Codesign of a CNN and its Hardware Accelerator. In Design Automation Conference (DAC).
[2] M. S. Abdelfattah, D. Han, A. Bitar, R. DiCecco, S. O’Connell, N. Shanker, J. Chu, I. Prins, J. Fender, A. C. Ling, and G. R.

Chiu. 2018. DLA: Compiler and FPGA Overlay for Neural Network Inference Acceleration. In 2018 28th International
Conference on Field Programmable Logic and Applications (FPL). 411–4117.

[3] Fumiyuki Adachi et al. 1998. Wideband DS-CDMA for next-generation mobile communications systems. IEEE
communications Magazine 36, 9 (1998), 56–69.

[4] F. Adachi, M. Sawahashi, and K. Okawa. 1997. Tree-structured generation of orthogonal spreading codes with different
lengths for forward link of DS-CDMA mobile radio. Electronics Letters 33 (January 1997), 27–28(1). Issue 1.

[5] Jorge Albericio, Alberto Delmás, Patrick Judd, Sayeh Sharify, Gerard O’Leary, Roman Genov, and Andreas Moshovos.
2017. Bit-Pragmatic Deep Neural Network Computing. In Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 382–394.

[6] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and Andreas Moshovos.
2016. Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing. In Proceedings of the 43rd International
Symposium on Computer Architecture (ISCA). 1–13.

[7] Milad Alizadeh, Javier Fernández-Marqués, Nicholas D. Lane, and Yarin Gal. 2019. A Systematic Study of Binary
Neural Networks’ Optimisation. In International Conference on Learning Representations (ICLR).

[8] Mario Almeida et al. 2019. EmBench: Quantifying Performance Variations of Deep Neural Networks Across Modern
Commodity Devices. In EMDL.

[9] M. Alwani, H. Chen, M. Ferdman, and P. Milder. 2016. Fused-layer CNN accelerators. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1–12.

[10] Boris D. Andreev et al. 2003. Orthogonal Code Generator for 3G Wireless Transceivers. In Proceedings of the 13th
ACM Great Lakes Symposium on VLSI (GLSVLSI). 229–232. https://doi.org/10.1145/764808.764868

[11] Utku Aydonat, Shane O’Connell, Davor Capalija, AndrewC. Ling, and Gordon R. Chiu. 2017. An OpenCL™Deep Learn-
ing Accelerator on Arria 10. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA). 55–64.

[12] Arash Azizimazreah and Lizhong Chen. 2021. Polymorphic Accelerators for Deep Neural Networks. IEEE Trans.
Comput. (2021).

[13] E. Baek, D. Kwon, and J. Kim. 2020. A Multi-Neural Network Acceleration Architecture. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). 940–953.

[14] Sourav Bhattacharya and Nicholas D. Lane. 2016. Sparsification and Separation of Deep Learning Layers for
Constrained Resource Inference on Wearables. In Proceedings of the 14th ACM Conference on Embedded Network
Sensor Systems (SenSys). ACM, 176–189.

[15] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. 2020. What is the State of Neural
Network Pruning?. In Conference on Machine Learning and Systems (MLSys).

[16] Michaela Blott, Thomas B. Preußer, Nicholas J. Fraser, Giulio Gambardella, Kenneth O’brien, Yaman Umuroglu,
Miriam Leeser, and Kees Vissers. 2018. FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of
Quantized Neural Networks. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 11, 3, Article 16 (2018), 23 pages.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

https://doi.org/10.1145/764808.764868

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:27

[17] Andre Xian Ming Chang, Aliasger Zaidy, Vinayak Gokhale, and Eugenio Culurciello. 2017. Compiling Deep Learning
Models for Custom Hardware Accelerators. arXiv preprint arXiv:1708.00117 (2017).

[18] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. 2018. DeepLab: Semantic Image Segmentation with
Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI) 40, 4 (2018), 834–848.

[19] Yao Chen, Jiong He, Xiaofan Zhang, Cong Hao, and Deming Chen. 2019. Cloud-DNN: An Open Framework for
Mapping DNN Models to Cloud FPGAs. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA).

[20] Y. Chen, T. Krishna, J. S. Emer, and V. Sze. 2017. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks. IEEE Journal of Solid-State Circuits (JSSC) 52, 1 (2017), 127–138.

[21] G. Csordas, M. Asiatici, and P. Ienne. 2019. In Search of Lost Bandwidth: Extensive Reordering of DRAM Accesses on
FPGA. In 2019 International Conference on Field-Programmable Technology (ICFPT). 188–196.

[22] Chunhua Deng, Siyu Liao, Yi Xie, Keshab K. Parhi, Xuehai Qian, and Bo Yuan. 2018. PermDNN: Efficient Compressed
DNN Architecture with Permuted Diagonal Matrices. In Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 189–202.

[23] C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian, Y. Bai, G. Yuan, X. Ma, Y. Zhang, J. Tang, Q. Qiu,
X. Lin, and B. Yuan. 2017. CirCNN: Accelerating and Compressing Deep Neural Networks Using Block-Circulant
Weight Matrices. In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 395–408.

[24] Zhen Dong, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. 2019. HAWQ: Hessian AWare Quanti-
zation of Neural Networks with Mixed-Precision. In IEEE International Conference on Computer Vision (ICCV).

[25] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O. Temam. 2015. ShiDianNao: Shifting Vision
Processing Closer to the Sensor. In 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA). 92–104.

[26] Javier Fernández-Marqués, Vincent W.-S. Tseng, Sourav Bhattachara, and Nicholas D. Lane. 2018. On-the-Fly
Deterministic Binary Filters forMemory Efficient Keyword Spotting Applications on Embedded Devices. In Proceedings
of the 2nd International Workshop on Embedded and Mobile Deep Learning (EMDL). ACM, 13–18.

[27] Javier Fernández-Marqués, W-S Tseng Vincent, Sourav Bhattachara, and Nicholas D Lane. 2018. BinaryCmd: Keyword
Spotting with deterministic binary basis. In Conference on Machine Learning and Systems (MLSys).

[28] Javier Fernandez-Marques, Paul N.Whatmough, AndrewMundy, andMatthewMattina. 2020. Searching forWinograd-
aware Quantized Networks. In Conference on Machine Learning and Systems (MLSys).

[29] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi,
S. Heil, P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung, and D. Burger.
2018. A Configurable Cloud-Scale DNN Processor for Real-Time AI. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 1–14.

[30] Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. 2020. Sparse GPU Kernels for Deep Learning. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[31] V. Gokhale, A. Zaidy, A. X. M. Chang, and E. Culurciello. 2017. Snowflake: An Efficient Hardware Accelerator for
Convolutional Neural Networks. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS). 1–4.

[32] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and TN Vijaykumar. 2019. SparTen: A Sparse Tensor
Accelerator for Convolutional Neural Networks. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 151–165.

[33] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang, and J. Cong. 2017. FP-DNN: An Automated
Framework for Mapping Deep Neural Networks onto FPGAs with RTL-HLS Hybrid Templates. In 2017 IEEE 25th
Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). 152–159.

[34] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang, and H. Yang. 2018. Angel-Eye: A Complete Design Flow
for Mapping CNN Onto Embedded FPGA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD) 37, 1 (2018), 35–47.

[35] David Ha, Andrew Dai, and Quoc V. Le. 2017. HyperNetworks. In International Conference on Learning Representations
(ICLR).

[36] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. 2016. EIE: Efficient Inference Engine on
Compressed Deep Neural Network. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). 243–254.

[37] Song Han, Huizi Mao, and William J Dally. 2015. Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding. In International Conference on Learning Representations (ICLR).

[38] K He, X Zhang, S Ren, and J Sun. 2016. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 770–778.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

111:28 Venieris and Fernandez-Marques, et al.

[39] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. 2018. Soft Filter Pruning for Accelerating Deep
Convolutional Neural Networks. In International Joint Conference on Artificial Intelligence (IJCAI).

[40] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer Jaleel, Edgar Solomonik, Joel Emer,
and Christopher W. Fletcher. 2019. ExTensor: An Accelerator for Sparse Tensor Algebra. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 319–333.

[41] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang. 2016. A High Performance FPGA-
based Accelerator for Large-Scale Convolutional Neural Networks. In 2016 26th International Conference on Field
Programmable Logic and Applications (FPL). 1–9.

[42] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. 2016.
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv preprint
arXiv:1602.07360 (2016).

[43] Andrey Ignatov et al. 2019. AI Benchmark: All About Deep Learning on Smartphones in 2019. In ICCVW.
[44] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and

Dmitry Kalenichenko. 2018. Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only
Inference. In IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[45] Jun-Woo Jang et al. 2021. Sparsity-Aware and Re-configurable NPU Architecture for Samsung Flagship Mobile SoC.
In ISCA.

[46] Norman P Jouppi et al. 2017. In-Datacenter Performance Analysis of a Tensor Processing Unit. In Annual International
Symposium on Computer Architecture (ISCA).

[47] S. C. Kao and T. Krishna. 2020. GAMMA: Automating the HW Mapping of DNN Models on Accelerators via Genetic
Algorithm. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). 1–9.

[48] S. Kim, M. Kim, C. Shin, J. Lee, and Y. Kim. 2009. Efficient implementation of OVSF code generator for UMTS systems.
In 2009 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing. 483–486.

[49] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In International Conference on
Learning Representations (ICLR).

[50] A. Kouris, C. Kyrkou, and C. Bouganis. 2019. Informed Region Selection for Efficient UAV-based Object Detectors:
Altitude-aware Vehicle Detection with CyCAR Dataset. In 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). 51–58.

[51] A. Kouris, S. I. Venieris, and C. Bouganis. 2018. CascadeCNN: Pushing the Performance Limits of Quantisation in
Convolutional Neural Networks. In 2018 28th International Conference on Field Programmable Logic and Applications
(FPL). 155–1557.

[52] A. Kouris, S. I. Venieris, and C. Bouganis. 2020. A Throughput-Latency Co-Optimised Cascade of Convolutional
Neural Network Classifiers. In 2020 Design, Automation Test in Europe Conference Exhibition (DATE). 1656–1661.

[53] Raghuraman Krishnamoorthi. 2018. Quantizing Deep Convolutional Networks for Efficient Inference: A Whitepaper.
arXiv:1806.08342 [cs.LG]

[54] Hyoukjun Kwon, Prasanth Chatarasi, Vivek Sarkar, Tushar Krishna, Michael Pellauer, and Angshuman Parashar. 2020.
MAESTRO: A Data-Centric Approach to Understand Reuse, Performance, and Hardware Cost of DNN Mappings.
IEEE Micro 40, 3 (2020), 20–29.

[55] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling Flexible Dataflow Mapping over
DNN Accelerators via Reconfigurable Interconnects. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS). 461–475.

[56] Alberto Delmás Lascorz, Sayeh Sharify, Isak Edo, Dylan Malone Stuart, Omar Mohamed Awad, Patrick Judd, Mostafa
Mahmoud, Milos Nikolic, Kevin Siu, Zissis Poulos, and Andreas Moshovos. 2019. ShapeShifter: Enabling Fine-Grain
Data Width Adaptation in Deep Learning. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 28–41.

[57] Royson Lee, Stylianos I. Venieris, Lukasz Dudziak, Sourav Bhattacharya, and Nicholas D. Lane. 2019. MobiSR: Efficient
On-Device Super-Resolution through Heterogeneous Mobile Processors. In The 25th Annual International Conference
on Mobile Computing and Networking (MobiCom).

[58] Shuanglong Liu, Hongxiang Fan, Martin Ferianc, Xinyu Niu, Huifeng Shi, and Wayne Luk. 2021. Toward Full-Stack
Acceleration of Deep Convolutional Neural Networks on FPGAs. IEEE Transactions on Neural Networks and Learning
Systems (TNNLS) (2021).

[59] L. Lu, J. Xie, R. Huang, J. Zhang,W. Lin, and Y. Liang. 2019. An Efficient Hardware Accelerator for Sparse Convolutional
Neural Networks on FPGAs. In IEEE 27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 17–25.

[60] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li. 2017. FlexFlow: A Flexible Dataflow Accelerator Architecture for
Convolutional Neural Networks. In 2017 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 553–564.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

https://arxiv.org/abs/1806.08342

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:29

[61] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017. ThiNet: A Filter Level Pruning Method for Deep Neural Network
Compression. In IEEE International Conference on Computer Vision (ICCV).

[62] Y. Ma, Y. Cao, S. Vrudhula, and J. Seo. 2020. Automatic Compilation of Diverse CNNs Onto High-Performance FPGA
Accelerators. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) 39, 2 (2020),
424–437.

[63] Y. Ma, M. Kim, Y. Cao, S. Vrudhula, and J. Seo. 2017. End-to-End Scalable FPGA Accelerator for Deep Residual
Networks. In IEEE International Symposium on Circuits and Systems (ISCAS). 1–4.

[64] K. Manev, A. Vaishnav, and D. Koch. 2019. Unexpected Diversity: Quantitative Memory Analysis for Zynq UltraScale+
Systems. In 2019 International Conference on Field-Programmable Technology (ICFPT). 179–187.

[65] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. 2019. Importance Estimation for Neural
Network Pruning. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[66] Alexander Montgomerie-Corcoran and Christos Savvas-Bouganis. 2021. DEF: Differential Encoding of Featuremaps
for Low Power Convolutional Neural Network Accelerators. In Proceedings of the 26th Asia and South Pacific Design
Automation Conference (ASP-DAC.

[67] Yue Niu, Rajgopal Kannan, Ajitesh Srivastava, and Viktor Prasanna. 2020. Reuse Kernels or Activations? A Flexible
Dataflow for Low-Latency Spectral CNN Acceleration. In The 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA) (Seaside, CA, USA). 266–276.

[68] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally.
2017. SCNN: An Accelerator for Compressed-Sparse Convolutional Neural Networks. In 2017 ACM/IEEE 44th Annual
International Symposium on Computer Architecture (ISCA). 27–40.

[69] Adrien Prost-Boucle, Alban Bourge, and Frédéric Pétrot. 2018. High-Efficiency Convolutional Ternary Neural
Networks with Custom Adder Trees and Weight Compression. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 11,
3, Article 15 (2018), 24 pages.

[70] G. Purohit, V. K. Chaubey, K. S. Raju, and P. V. Reddy. 2013. FPGA based implementation and testing of OVSF code.
In 2013 International Conference on Advanced Electronic Systems (ICAES). 88–92.

[71] Qiang Qiu, Xiuyuan Cheng, robert Calderbank, and Guillermo Sapiro. 2018. DCFNet: Deep Neural Network with
Decomposed Convolutional Filters. In Proceedings of the 35th International Conference on Machine Learning (ICML).
4198–4207.

[72] T. Rintakoski, M. Kuulusa, and J. Nurmi. 2004. Hardware unit for OVSF/Walsh/Hadamard code generation [3G mobile
communication applications]. In 2004 International Symposium on System-on-Chip (ISSOC). 143–145.

[73] Ananda Samajdar, Tushar Garg, Tushar Krishna, and Nachiket Kapre. 2019. Scaling the Cascades: Interconnect-Aware
FPGA Implementation of Machine Learning Problems. In 2019 29th International Conference on Field Programmable
Logic and Applications (FPL).

[74] Y. Shen, M. Ferdman, and P. Milder. 2017. Escher: A CNN Accelerator with Flexible Buffering to Minimize Off-Chip
Transfer. In 2017 IEEE 25th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM). 93–100.

[75] Yongming Shen, Michael Ferdman, and Peter Milder. 2017. Maximizing CNN Accelerator Efficiency Through Resource
Partitioning. In Proceedings of the 44th Annual International Symposium on Computer Architecture (ISCA).

[76] R. Shi, Y. Ding, X. Wei, H. Li, H. Liu, H. K. . H. So, and C. Ding. 2020. FTDL: A Tailored FPGA-Overlay for Deep
Learning with High Scalability. In 57th ACM/IEEE Design Automation Conference (DAC). 1–6.

[77] Shun Yan et al. 2021. An FPGA-based MobileNet Accelerator Considering Network Structure Characteristics. In 2021
31st International Conference on Field Programmable Logic and Applications (FPL).

[78] K. Siu, D. M. Stuart, M. Mahmoud, and A. Moshovos. 2018. Memory Requirements for Convolutional Neural Network
Hardware Accelerators. In 2018 IEEE International Symposium on Workload Characterization (IISWC). 111–121.

[79] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang. 2020. Tensaurus: A Versatile Accelerator for
Mixed Sparse-Dense Tensor Computations. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 689–702.

[80] VincentW.-S. Tseng, Sourav Bhattacharya, Javier Fernández Marqués, Milad Alizadeh, Catherine Tong, and Nicholas D.
Lane. 2018. Deterministic Binary Filters for Convolutional Neural Networks. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence (IJCAI). 2739–2747.

[81] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei. 2017. Deep Convolutional Neural Network Architecture With
Reconfigurable Computation Patterns. IEEE Transactions on Very Large Scale Integration (VLSI) Systems (TVLSI) 25, 8
(2017), 2220–2233.

[82] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott. 2020. LogicNets: Co-Designed Neural Networks and Circuits for
Extreme-Throughput Applications. In 2020 30th International Conference on Field-Programmable Logic and Applications
(FPL). 291–297. https://doi.org/10.1109/FPL50879.2020.00055

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

https://doi.org/10.1109/FPL50879.2020.00055

111:30 Venieris and Fernandez-Marques, et al.

[83] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees
Vissers. 2017. FINN: A Framework for Fast, Scalable Binarized Neural Network Inference. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA). 65–74.

[84] S. I. Venieris and C. Bouganis. 2017. Latency-Driven Design for FPGA-based Convolutional Neural Networks. In 2017
27th International Conference on Field Programmable Logic and Applications (FPL). 1–8.

[85] S. I. Venieris and C. Bouganis. 2019. fpgaConvNet: Mapping Regular and Irregular Convolutional Neural Networks
on FPGAs. IEEE Transactions on Neural Networks and Learning Systems (TNNLS) 30, 2 (2019), 326–342.

[86] S. I. Venieris and C. S. Bouganis. 2018. f-CNNx: A Toolflow for Mapping Multiple Convolutional Neural Networks on
FPGAs. In 2018 28th International Conference on Field Programmable Logic and Applications (FPL). 1–8.

[87] Stylianos I. Venieris, Javier Fernandez-Marques, and Nicholas D. Lane. 2021. unzipFPGA: Enhancing FPGA-based
CNN Engines with On-the-Fly Weights Generation. In 2021 IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 165–175.

[88] Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis. 2018. Toolflows for Mapping Convolutional
Neural Networks on FPGAs: A Survey and Future Directions. ACM Comput. Surv. (CSUR) 51, 3, Article 56 (2018),
39 pages.

[89] Stylianos I. Venieris, Ioannis Panopoulos, and Iakovos S. Venieris. 2021. OODIn: An Optimised On-Device Inference
Framework for Heterogeneous Mobile Devices. In IEEE SMARTCOMP.

[90] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. Constantinides. 2020. LUTNet: Learning FPGA Configurations for Highly
Efficient Neural Network Inference. IEEE Transactions on Computers (TOC) (2020).

[91] Tianzhe Wang, Kuan Wang, Han Cai, Ji Lin, Zhijian Liu, and Song Han. 2020. APQ: Joint Search for Network
Architecture, Pruning and Quantization Policy. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR).

[92] Yunhe Wang, Chang Xu, Chao Xu, and Dacheng Tao. 2017. Beyond Filters: Compact Feature Map for Portable Deep
Model. In Proceedings of the 34th International Conference on Machine Learning (ICML). 3703–3711.

[93] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning Structured Sparsity in Deep Neural
Networks. In Proceedings of the 30th International Conference on Neural Information Processing Systems (NeurIPS).

[94] Carole-Jean Wu et al. 2019. Machine Learning at Facebook: Understanding Inference at the Edge. In HPCA.
[95] Xilinx. 2020. Adaptive Machine Learning Acceleration. https://www.xilinx.com/products/acceleration-solutions/

xilinx-machine-learning-suite.html. [Retrieved: July 25, 2023].
[96] Y. Xing, S. Liang, L. Sui, X. Jia, J. Qiu, X. Liu, Y. Wang, Y. Shan, and Y. Wang. 2019. DNNVM: End-to-End Compiler

Leveraging Heterogeneous Optimizations on FPGA-based CNN Accelerators. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD) (2019).

[97] Lei Yang, Zheyu Yan, Meng Li, Hyoukjun Kwon, Weiwen Jiang, Liangzhen Lai, Yiyu Shi, Tushar Krishna, and Vikas
Chandra. 2020. Co-Exploration of Neural Architectures and Heterogeneous ASIC Accelerator Designs Targeting
Multiple Tasks. In Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference (DAC).

[98] Yingzhen Yang, Jiahui Yu, Nebojsa Jojic, Jun Huan, and Thomas S. Huang. 2020. FSNet: Compression of Deep
Convolutional Neural Networks by Filter Summary. In International Conference on Learning Representations (ICLR).

[99] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das, and Scott Mahlke. 2017. Scalpel:
Customizing DNN Pruning to the Underlying Hardware Parallelism. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA). 548–560.

[100] Yunxuan Yu, Tiandong Zhao, Kun Wang, and Lei He. 2020. Light-OPU: An FPGA-Based Overlay Processor for
Lightweight Convolutional Neural Networks. In The 2020 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA). 122–132.

[101] Y. Yu, T. Zhao, M. Wang, K. Wang, and L. He. 2020. Uni-OPU: An FPGA-Based Uniform Accelerator for Convolutional
and Transposed Convolutional Networks. IEEE Transactions on Very Large Scale Integration Systems (TVLSI) 28, 7
(2020), 1545–1556.

[102] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. 2015. Optimizing FPGA-Based
Accelerator Design for Deep Convolutional Neural Networks. In Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA). 161–170.

[103] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong. 2019. Caffeine: Toward Uniformed Representation and
Acceleration for Deep Convolutional Neural Networks. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) 38, 11 (2019), 2072–2085.

[104] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen. 2016. Cambricon-X: An Accelerator
for Sparse Neural Networks. In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
1–12.

[105] Y. Zhao, X. Gao, X. Guo, J. Liu, E. Wang, R. Mullins, P. Y. K. Cheung, G. Constantinides, and C. Xu. 2019. Automatic
Generation of Multi-Precision Multi-Arithmetic CNN Accelerators for FPGAs. In 2019 International Conference on

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

https://www.xilinx.com/products/acceleration-solutions/xilinx-machine-learning-suite.html
https://www.xilinx.com/products/acceleration-solutions/xilinx-machine-learning-suite.html

Mitigating Memory Wall Effects in CNN Engines with On-the-Fly Weights Generation 111:31

Field-Programmable Technology (ICFPT). 45–53.
[106] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang, X. Zhou, L. Li, T. Chen, and Y. Chen. 2018. Cambricon-S: Addressing

Irregularity in Sparse Neural Networks through A Cooperative Software/Hardware Approach. In 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO). 15–28.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2022.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Designing Lightweight Convolutional Neural Networks
	2.2 On-the-Fly Convolutional Neural Networks
	2.3 On-the-Fly OVSF CNN Layers
	2.4 Challenges of FPGA-based CNN Engines

	3 unzipFPGA's Design Flow
	4 CNN Engine Design for On-the-Fly Weights
	4.1 Conventional CNN Engine Design
	4.2 Devising a Hardware CNN Weights Generator
	4.3 Input Selective PEs for Counteracting Underutilisation

	5 Design Space Exploration
	5.1 Performance Model
	5.2 Resource Consumption Model
	5.3 Configuration Optimisation Framework

	6 Deriving Lightweight OVSF Models
	6.1 Practical Considerations to Train OVSF Models
	6.2 Hardware-Aware Tuning of OVSF Ratios

	7 Evaluation
	7.1 Experimental Setup
	7.2 Performance Comparison
	7.3 Sensitivity to Off-Chip Memory Bandwidth
	7.4 Impact of Input Selective PEs
	7.5 Hardware-Aware vs. Manual Tuning of OVSF Ratios
	7.6 Comparison with Embedded GPU

	8 Conclusion
	References

